
Ver. 1.11.6.3 BASCOM-AVR Page 1 of 420

BASCOM-AVR

Version 1.11.6.3

Ver. 1.11.6.3 BASCOM-AVR Page 2 of 420

Index

INDEX.. 2

INSTALLATION OF BASCOM-AVR .. 14

RUNNING BASCOM-AVR .. 20

FILE NEW.. 21

FILE OPEN.. 21

FILE CLOSE.. 22

FILE SAVE .. 22

FILE SAVE AS .. 22

FILE PRINT PREVIEW ... 23

FILE PRINT ... 23

FILE EXIT .. 23

EDIT UNDO... 23

EDIT REDO ... 24

EDIT CUT .. 24

EDIT COPY ... 24

EDIT PASTE.. 24

EDIT FIND ... 24

EDIT FIND NEXT... 25

EDIT REPLACE .. 25

EDIT GOTO... 25

EDIT TOGGLE BOOKMARK.. 25

EDIT GOTO BOOKMARK .. 25

EDIT INDENT BLOCK .. 26

EDIT UNINDENT BLOCK ... 26

PROGRAM COMPILE .. 26

Ver. 1.11.6.3 BASCOM-AVR Page 3 of 420

PROGRAM SYNTAX CHECK .. 27

PROGRAM SHOW RESULT .. 27

PROGRAM SIMULATE .. 28

PROGRAM SEND TO CHIP ... 36

TOOLS TERMINAL EMULATOR ... 37

TOOLS LCD DESIGNER .. 39

TOOLS GRAPHIC CONVERTER... 40

TOOLS LIB MANAGER.. 41

LCD4.LIB... 42

LCD4E2 ... 43

MCSBYTE ... 44

MCSBYTEINT ... 45

OPTIONS COMPILER .. 46

OPTIONS COMPILER CHIP... 47

OPTIONS COMPILER OUTPUT... 48

OPTIONS COMPILER COMMUNICATION.. 49

OPTIONS COMPILER I2C, SPI, 1WIRE .. 50

OPTIONS COMPILER LCD.. 52

OPTIONS COMMUNICATION.. 53

OPTIONS ENVIRONMENT... 54

OPTIONS SIMULATOR .. 58

OPTIONS PROGRAMMER... 58

OPTIONS MONITOR .. 59

OPTIONS PRINTER.. 60

WINDOW CASCADE .. 60

WINDOW TILE .. 60

WINDOW ARRANGE ICONS ... 60

Ver. 1.11.6.3 BASCOM-AVR Page 4 of 420

WINDOW MINIMIZE ALL.. 60

HELP ABOUT ... 61

HELP INDEX ... 61

HELP ON HELP .. 62

HELP CREDITS .. 62

BASCOM EDITOR KEYS ... 62

DEVELOPING ORDER ... 64

MEMORY USAGE... 64

ERROR CODES.. 66

ADDITIONAL HARDWARE.. 72

AT90S2313.. 73

AT90S2333.. 73

AT90S4433.. 74

AVR INTERNAL HARDWARE ... 75

AVR INTERNAL REGISTERS.. 77

AVR INTERNAL HARDWARE TIMER0 ... 79

AVR INTERNAL HARDWARE TIMER1 ... 80

AVR INTERNAL HARDWARE WATCHDOG TIMER .. 82

AVR INTERNAL HARDWARE PORT B... 83

AVR INTERNAL HARDWARE PORT D... 84

ADDING XRAM... 86

ATTACHING AN LCD DISPLAY .. 87

USING THE I2C PROTOCOL... 89

USING THE 1 WIRE PROTOCOL .. 90

USING THE SPI PROTOCOL... 94

POWER UP ... 97

LANGUAGE FUNDAMENTALS... 98

Ver. 1.11.6.3 BASCOM-AVR Page 5 of 420

RESERVED WORDS .. 116

#IF ELSE ENDIF ... 123

$ASM... 125

$BAUD .. 125

$BGF ... 126

$CRYSTAL.. 127

$DATA... 128

$DEFAULT.. 130

$EEPROM ... 131

$EXTERNAL ... 133

$INCLUDE... 134

$LCD ... 135

$LCDPUTCTRL... 136

$LCDPUTDATA .. 137

$LCDRS .. 138

$LIB ... 139

$MAP... 141

$NOINIT... 142

$NORAMCLEAR... 145

$REGFILE ... 145

$ROMSTART .. 146

$SERIALINPUT... 147

$SERIALINPUT2LCD ... 149

$SERIALOUTPUT... 150

$SIM .. 151

$TINY... 152

$WAITSTATE.. 153

Ver. 1.11.6.3 BASCOM-AVR Page 6 of 420

$XRAMSIZE .. 154

$XRAMSTART .. 155

1WIRECOUNT... 156

1WREAD ... 158

1WRESET ... 160

1WSEARCHFIRST.. 162

1WSEARCHNEXT... 165

1WVERIFY .. 168

1WWRITE.. 170

ALIAS.. 173

ABS()... 173

ASC ... 175

BAUD .. 176

BCD ... 177

BIN... 178

BITWAIT.. 179

BYVAL... 180

CALL ... 181

CHECKSUM.. 183

CHR ... 184

CLS.. 185

CLOCKDIVISION .. 186

CLOSE .. 187

CONFIG... 189

CONFIG 1WIRE .. 190

CONFIG ADC.. 191

CONFIG CLOCK... 192

Ver. 1.11.6.3 BASCOM-AVR Page 7 of 420

CONFIG DEBOUNCE ... 194

CONFIG GRAPHLCD ... 195

CONFIG I2CDELAY.. 198

CONFIG INTX.. 200

CONFIG KBD.. 201

CONFIG KEYBOARD ... 201

CONFIG LCD .. 203

CONFIG LCDBUS... 204

CONFIG LCDMODE ... 205

CONFIG LCDPIN .. 206

CONFIG PORT.. 207

CONFIG RC5... 209

CONFIG SCL... 209

CONFIG SDA .. 210

CONFIG SERIALIN... 211

CONFIG SERIALOUT... 213

CONFIG SERVOS... 214

CONFIG SPI .. 216

CONFIG TIMER0... 218

CONFIG TIMER1... 220

CONFIG TIMER2... 223

CONFIG WAITSUART .. 225

CONFIG WATCHDOG .. 226

CONST .. 227

COUNTER0 AND COUNTER1 ... 229

CPEEK .. 230

CPEEKH.. 231

Ver. 1.11.6.3 BASCOM-AVR Page 8 of 420

CRC8 ... 232

CRYSTAL.. 234

CURSOR ... 235

DATA... 236

DATE$... 239

DEBOUNCE .. 240

DECLARE FUNCTION.. 245

DECLARE SUB... 247

DECR... 248

DEFXXX .. 249

DEFLCDCHAR.. 249

DELAY... 250

DIM .. 251

DISABLE... 253

DISPLAY ... 255

DO-LOOP.. 256

DTMFOUT ... 257

ECHO .. 260

ELSE ... 261

ENABLE.. 262

END ... 264

EXIT... 264

EXP.. 265

FOR-NEXT .. 266

FORMAT ... 268

FOURTHLINE.. 269

FUSING ... 270

Ver. 1.11.6.3 BASCOM-AVR Page 9 of 420

GETADC.. 271

GETATKBD... 273

GETKBD.. 275

GETRC .. 277

GETRC5 .. 278

GOSUB.. 281

GOTO .. 282

HEX ... 283

HEXVAL .. 284

HIGH.. 285

HIGHW .. 286

HOME.. 286

I2CRECEIVE ... 287

I2CSEND ... 288

I2START,I2CSTOP, I2CRBYTE, I2CWBYTE... 289

IDLE... 291

IF-THEN-ELSE-END IF... 291

INCR .. 293

INKEY.. 294

INP... 295

INPUTBIN.. 296

INPUTHEX... 297

INPUT .. 298

INSTR .. 300

LCASE... 301

LCD ... 302

LEFT.. 304

Ver. 1.11.6.3 BASCOM-AVR Page 10 of 420

LEN.. 305

LOAD... 306

LOADADR... 307

LOCAL .. 307

LOCATE.. 310

LOG ... 311

LOOKDOWN... 312

LOOKUP ... 314

LOOKUPSTR .. 315

LOW .. 316

LOWERLINE ... 316

LTRIM.. 317

MAKEBCD .. 318

MAKEINT .. 319

MAKEDEC... 320

MID .. 321

ON INTERRUPT.. 321

ON VALUE .. 324

OPEN... 327

OUT ... 329

PEEK ... 330

POKE... 331

POPALL .. 332

POWERDOWN.. 332

POWERSAVE ... 333

PRINT .. 334

PRINTBIN.. 335

Ver. 1.11.6.3 BASCOM-AVR Page 11 of 420

PSET ... 336

PULSEIN ... 338

PULSEOUT ... 339

PUSHALL.. 340

READ... 341

READEEPROM... 342

READMAGCARD.. 345

REM... 347

RESET... 348

RESTORE ... 349

RETURN.. 350

RIGHT.. 351

RND ... 351

REMARKS... 352

ROTATE.. 352

RTRIM ... 353

SELECT-CASE-END SELECT ... 354

SET.. 355

SHIFT .. 356

SHIFTCURSOR... 357

SHIFTIN... 358

SHIFTOUT... 360

SHIFTLCD... 361

SHOWPIC.. 362

SOUND.. 364

SPACE .. 365

SPC ... 366

Ver. 1.11.6.3 BASCOM-AVR Page 12 of 420

SPIIN ... 367

SPIINIT .. 367

SPIMOVE .. 368

SPIOUT ... 369

START... 370

STCHECK ... 371

STOP ... 377

STR.. 379

STRING ... 380

SUB ... 381

SWAP.. 381

THIRDLINE.. 382

TIME$.. 383

TOGGLE.. 385

TRIM .. 386

UCASE .. 386

UPPERLINE .. 388

VAL.. 388

VARPTR.. 389

WAIT.. 390

WAITKEY .. 391

WAITMS .. 391

WAITUS... 393

WHILE-WEND... 394

WRITEEEPROM.. 395

CHANGES COMPARED TO BASCOM-8051 .. 397

LINKS.. 398

Ver. 1.11.6.3 BASCOM-AVR Page 13 of 420

TIPS AND TRICKS ... 399

NEWBIE PROBLEMS... 399

SUPPORTED PROGRAMMERS.. 400

PG302 PROGRAMMER.. 401

KITSRUS PROGRAMMER ... 402

ISP PROGRAMMER ... 403

SAMPLE ELECTRONICS CABLE PROGRAMMER ... 404

ASSEMBLER MNEMONICS... 407

MIXING ASM AND BASIC.. 412

INTERNATIONAL RESELLERS... 418

Ver. 1.11.6.3 BASCOM-AVR Page 14 of 420

If you have questions, remarks or suggestions please let us know.
You can contact us by sending an email to avr@mcselec.com
Our website is at http://www.mcselec.com

For info on updates : please read the readme.txt file that is installed into
the BASCOM-AVR directory

MCS Electronics may update this documentation without notice.
Products specification and usage may change accordingly.

MCS Electronics will not be liable for any mis-information or errors found in
this document.

All software provided with this product package is provided ' AS IS' without
any warranty expressed or implied.

MCS Electronics will not be liable for any damages, costs or loss of profits
arising from the usage of this product package.

No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying and recording,
for any purpose, without written permission of MCS Electronics.

Copyright MCS Electronics. All rights reserved.

Installation of BASCOM-AVR
When you downloaded the ZIP files from our website you need to UNZIP
them.
The first file will unzip the file named SETUP.EXE
The second will unzip the file named SETUP.W02
When there is a third file provided, it will contain the file SETUP.W03.

The files can also come on diskettes. In that case there are no zip files and

Ver. 1.11.6.3 BASCOM-AVR Page 15 of 420

you can continue without unzipping.

And finally the files can be on a CD-ROM. In that case the files are unzipped
already too.

The commercial edition comes with a license file in the form of a dll. This file
is always on the first disk where the file SETUP.EXE is located. When
explorer does not show this file, you must set the option in explorer to view
system files(because a DLL is a system file).

Some resellers might distribute the DLL file in a zipped file. Or the file might
have the extension of a number like 123. In this case you must rename the
number into DLL.
Make sure the DLL is in the same directory as the SETUP.EXE file.

When you are using the DEMO you don't need to worry about the license file.

When you are installing on a NT machine like NT4 or W2000, you need to
have Administrator rights.
After installing BASCOM you need to run BASCOM once as an administrator
too. After that you may run BASCOM as any other user.

Now run the SETUP.EXE by double clicking on it in explorer. Or from the
DOS command prompt.

The following window will appear:
(screen shots may differ a bit)

Ver. 1.11.6.3 BASCOM-AVR Page 16 of 420

Click on the Next button to continue installation.

The following license info window will appear:

Ver. 1.11.6.3 BASCOM-AVR Page 17 of 420

Read the license agreement and click the Yes button when you agree.
A window with additional information is then displayed. This information will be
installed as a readme.txt file and contains information on how to get free
updates. It also contains the password needed to unzip updates.

After reading the information, click the Next button.
Now the following window appears:

Fill in your name and company name.
Click the Next button to continue.

Now you have the change to select the directory in which BASCOM will be
installed.

Ver. 1.11.6.3 BASCOM-AVR Page 18 of 420

Select the Browse button to change the directory path if required.
By default BASCOM-AVR will be installed into:
C:\Program Files\MCS Electronics\BASCOM-AVR

After selecting the installation directory, click the Next button.
This time you will be asked in which program group the BASCOM-AVR icon
must be placed.
By default, a new program group named MCS Electronics will be made.

Ver. 1.11.6.3 BASCOM-AVR Page 19 of 420

After selecting the group, click the Next button to continue.
A summary will be shown. You may go back and change your settings.
Otherwise, click the Next button to complete the installation of BASCOM-
AVR.

Ver. 1.11.6.3 BASCOM-AVR Page 20 of 420

When the installation is completed you must click the Finish-button, and
restart Windows.

A sub directory named SAMPLES contains all the BASCOM-AVR sample
files.
A sub directory named LIB contains the Library files.

Running BASCOM-AVR
Double-click the BASCOM-AVR icon to run BASCOM.
The following window will appear. (If this is your first run, the edit window will
be empty.)

Ver. 1.11.6.3 BASCOM-AVR Page 21 of 420

The most-recently opened file will be loaded.

File New
This option creates a new window in which you will write your program.
The focus is set to the new window.

File new shortcut: , CTRL + N

File Open
With this option you can load an existing program from disk.
BASCOM saves files in standard ASCII format. Therefore, if you want to load
a file that was made with another editor be sure that it is saved as an ASCII
file.

Note that you can specify that BASCOM must reformat the file when it opens

Ver. 1.11.6.3 BASCOM-AVR Page 22 of 420

it with the Options Environment option. This should only be necessary when
loading files made with another editor.

File open shortcut : , CTRL+O

File Close
Close the current program.
When you have made changes to the program, you will be asked to save the
program first.

File close shortcut :

File Save
With this option, you save your current program to disk under the same file
name.
If the program was created with the File New option, you will be asked to
name the file first. Use the File Save As option to give the file another name.

Note that the file is saved as an ASCII file.

File save shortcut : , CTRL+S

File Save As
With this option, you can save your current program to disk under a different
file name.

Note that the file is saved as an ASCII file.

Ver. 1.11.6.3 BASCOM-AVR Page 23 of 420

File save as shortcut :

File Print Preview
With this option, you can preview the current program before it is printed.
Note that the current program is the program that has the focus.

File print preview shortcut :

File Print
With this option, you can print the current program.
Note that the current program is the program that has the focus.

File print shortcut : , CTRL+P

File Exit
With this option, you can leave BASCOM.
If you have made changes to your program, you can save them upon leaving
BASCOM.

File exit shortcut :

Edit Undo
With this option, you can undo the last text manipulation.

Edit Undo shortcut : , CTRL+Z

Ver. 1.11.6.3 BASCOM-AVR Page 24 of 420

Edit Redo
With this option, you can redo the last undo.

Edit Redo shortcut : , CTRL+SHIFT+Z

Edit Cut
With this option, you can cut selected text into the clipboard.

Edit cut shortcut : , CTRL+X

Edit Copy
With this option, you can copy selected text into the clipboard.

Edit copy shortcut : , CTRL+C

Edit Paste
With this option, you can paste text from the clipboard into the current cursor
position.

Edit paste shortcut : , CTRL+V

Edit Find
With this option, you can search for text in your program.
Text at the cursor position will be placed in the find dialog box.

Edit Find shortcut : , CTRL+F

Ver. 1.11.6.3 BASCOM-AVR Page 25 of 420

Edit Find Next
With this option, you can search for the last specified search item.

Edit Find Next shortcut : , F3

Edit Replace
With this option, you can replace text in your program.

Edit Replace shortcut : , CTRL+R

Edit Goto
With this option, you can immediately go to a line .

Edit go to line shortcut : ,CTRL+G

Edit Toggle Bookmark
With this option, you can set/reset a bookmark, so you can jump in your code
with the Edit Go to Bookmark option. Shortcut : CTRL+K + x where x can be
1-8

Edit Goto Bookmark
With this option, you can jump to a bookmark.
There can be up to 8 bookmarks. Shortcut : CTRL+Q+ x where x can be 1-8

Ver. 1.11.6.3 BASCOM-AVR Page 26 of 420

Edit Indent Block
With this option, you can indent a selected block of text.

Edit Indent Block shortcut : , CTRL+SHIFT+I

Edit Unindent Block
With this option, you can un-indent a block.

Edit Unindent Block shortcut : , CTRL+SHIFT+U

Program Compile
With this option, you can compile your current program.
Your program will be saved automatically before being compiled.
The following files will be created depending on the Option Compiler Settings.

File Description
xxx.BIN Binary file which can be programmed into the microprocessor
xxx.DBG Debug file that is needed by the simulator.
xxx.OBJ Object file for simulating using AVR Studio. Also needed by

the internal simulator.
xxx.HEX Intel hexadecimal file, which is needed by some programmers.
xxx.ERR Error file. Only created when errors are found.
xxx.RPT Report file.
xxx.EEP EEPROM image file

If a serious error occurs, you will receive an error message in a dialog box
and the compilation will end.
All other errors will be displayed at the bottom above the status bar.

When you click on the line with the error info, you will jump to the line that
contains the error. The margin will also display the sign.

Ver. 1.11.6.3 BASCOM-AVR Page 27 of 420

At the next compilation, the error window will disappear.

Program compile shortcut: , F7

Program Syntax Check
With this option, your program is checked for syntax errors. No file will be
created except for an error file, if an error is found.

Program syntax check shortcut , CTRL + F7

Program Show Result
Use this option to view the result of the compilation.
See the Options Compiler Output for specifying which files must be created.
The files that can be viewed are report and error.

File show result shortcut : ,CTRL+W

Information provided in the report:
Info Description
Report Name of the program
Date and time The compilation date and time.
Compiler The version of the compiler.
Processor The selected target processor.
SRAM Size of microprocessor SRAM (internal RAM).
EEPROM Size of microprocessor EEPROM (internal EEPROM).
ROMSIZE Size of the microprocessor FLASH ROM.
ROMIMAGE Size of the compiled program.
BAUD Selected baud rate.
XTAL Selected XTAL or frequency.
BAUD error The error percentage of the baud rate.
XRAM Size of external RAM if available.

Ver. 1.11.6.3 BASCOM-AVR Page 28 of 420

Stack start The location in memory, where the hardware stack points to. The HW-
stack pointer grows down.

S-Stacksize The size of the software stack.
S-Stackstart The location in memory where the software stack pointer points to. The

software stack pointer grows down.
Framesize The size of the frame. The frame is used for storing local variables.
Framestart The location in memory where the frame starts.
LCD address The address that must be placed on the bus to enable the LCD display

E-line.
LCD RS The address that must be placed on the bus to enable the LCD RS-line
LCD mode The mode the LCD display is used with. 4 bit mode or 8 bit mode.
LCD DB7-DB4 The port pins used for controlling the LCD in pin mode.
LCD E The port pin used to control the LCD enable line.
LCD RS The port pin used to control the LCD RS line.
Variable The variable name and address in memory
Constant Constants name and value

Some internal constants are :
_CHIP : number that identifies the selected chip
_RAMSIZE : size of SRAM
_ERAMSIZE : size of EEPROM
_XTAL : value of crystal
_BUILD : number that identifies the version of the compiler

Program Simulate
With this option, you can simulate your program.
You can simulate your programs with AVR Studio or any other Simulator
available or you can use the build in Simulator.
Which one will be used when you press F2 depends on the selection you
made in the Options Simulator TAB.

Program Simulate shortcut : , F2

To use the build in Simulator the files DBG and OBJ must be selected from
the Options Compiler Output TAB.

Ver. 1.11.6.3 BASCOM-AVR Page 29 of 420

The OBJ file is the same file that is used with the AVR Studio simulator.
The DBG file contains info on variables used and many more info needed to
simulate a program.

The Sim window is divided into a few sections:
The Toolbar
The toolbar contains the buttons you can press to start an action.

 This starts a simulation. It is the RUN button. The simulation will pause
when you press the pause button. You can also press F5.

 This is the pause button. Pressing this button will pause simulation.

 This is the STOP button. Pressing this button will stop simulation and you
can't continue. This because all variables are reset. You need to press this
button when you want to simulate your program again.

 This is sthe STEP button. Pressing this button(or F8) will execute one

Ver. 1.11.6.3 BASCOM-AVR Page 30 of 420

code line of your BASIC program. After the line is executed the simulator will
be in the pause state.

 This is the STEP OVER button. It has the same effect as the STEP
button but sub programs are executed and there is no step into the SUB
program. You can also press SHIFT+F8

 This is the RUN TO button. The simulator will RUN to the current line.
The line must contain executable code.

 This button will show the register window.

The values are show in hexadecimal format. To change a value click the cell
of the Val column and type the new value.

 This is the IO button and will show the IO registers.

Ver. 1.11.6.3 BASCOM-AVR Page 31 of 420

The IO window works the same like the Register window. Blank rows indicate
that there is no IO-register assigned to that address.(The blank rows might be
deleted later.)

 Pressing this button shows the Memory window.

The values can be changed the same way like in the Register window.
When you move from cell to cell you can view in the status bar which variable
is stored in the address.

Ver. 1.11.6.3 BASCOM-AVR Page 32 of 420

Under the toolbar section there is a TAB with the pages:
VARIABLES

You can add variables by double clicking in the Variable-column. A list will
pop up from which you can select the variable.
To watch an array variable you can type the name of the variable with the
index.
During simulation you can change the values of the variables in the Value-
column, Hex-column or Bin-column. You must press ENTER to store the
change.

To delete a row you can press CTRL+DEL.

LOCALS

The LOCAL window show the variables in a SUB or FUNCTION. LOCAL
variables are also shown. You can not add variables.
Changing the value of the variables works the same as for the Variable TAB.

WATCH
The Watch-TAB can be used to enter an expression that will be evaluated
during simulation. When the expression is true the simulation is paused.
Type the expression in the text-field and press the Add-button.
When you press the Modify-button the current selected expression from the
list is modified with the typed value.

Ver. 1.11.6.3 BASCOM-AVR Page 33 of 420

To delete an expression you must select the expression from the list and
press the Remove-button.
When the expression becomes true the expression that matches will be
selected and the Watch-TAB will be shown.

UP

This TAB shows the status of the microprocessor SREG register.
The flags can be changed by clicking their checkboxes.
The software stack , hardware stack and frame pointer values are also shown.
The minimum or maximum value during simulation is shown. When one of the
data is entering another one there is a case of stack/frame overflow.
This will be signaled with a pause and a checkbox.

INTERRUPTS

This TAB shows the interrupt sources. When no ISR's are programmed all
buttons will be disabled.

By clicking a button the corresponding ISR is executed.

Ver. 1.11.6.3 BASCOM-AVR Page 34 of 420

TERMINAL Section
Under the TAB window you will find the terminal emulator window.
When you use PRINT, the output will be shown in this window.
When you use INPUT in your program, you must set the focus to the terminal
window and press the needed value.

SOURCE Section
Under the Terminal section you find the Source Window.
It contains the program you simulate. All lines that contain executable code
have a yellow point in the left margin.
You can set a breakpoint on these lines by pressing F9.

By moving the mouse cursor over a variable name the value is shown in the
status bar.
When you select a variable and press ENTER it will be added to the Variable
window.

When you want to use the keys (F8 for stepping for example) the focus must
be set to the Source Window.

A blue arrow will show the line that will be executed next.

The hardware simulator.

By pressing the hardware simulation button the windows shown below
will be displayed.

Ver. 1.11.6.3 BASCOM-AVR Page 35 of 420

The top section is a virtual LCD display. It works for display code in PIN mode
and bus mode. For bus mode only 8-bit bus mode works.
The LED bars below are a visual indication of the ports.
By clicking a LED it will toggle.

Enable Real Hardware Simulation

By clicking the button you can simulate the ports in circuit!
In order to get it work you must compile the basmon.bas file.
When compiled program a chip.
Lets say you have the DT006 simmstick. And you are using a 2313 AVR chip.
Open the basmon.bas file and change the line with $REGFILE = "xxx" into
$REGFILE = "2313def.dat"
Now compile the program. Program the chip. It is best to set the lock bits so
the monitor does not get overwritten when you accidentally press F4.
The real hardware simulation only works when the target micro system has a
serial port. Most have and so does the DT006.
Connect a cable between the COM port of your PC and the DT006. You
probably already have one connected. Normally it is used to send data to the
terminal emulator with PRINT.

The monitor program is compile with 19200 baud. The Options
Communication settings must be set to the same baud rate!
The same settings for the monitor program are used as for the Terminal
emulator. So select the COM port and the baud rate of 19200.

Ver. 1.11.6.3 BASCOM-AVR Page 36 of 420

Power up the DT006. It probably was since you created the basmon program
and stored it in the 2313.
When you press the real hardware simulation button now the simulator will
send and receive data when a port, pin or ddr register is changed.
This allows you to simulate an attached LCD display for example. Or
something simpler, the LED. In the SAMPLE dir you will find a program
DT006. You can compile thie program and press F2.
When you step through the program the LED's will change!
All statements can be simulated this way but the have to be static. Which
means that 1wire will not work because it depends on timing. I2C has a static
bus and that will work.
It is important that when you finish your simulation sessions that you click the
button again to disable the Real hardware simulation.

When the program hangs it probably means that something wend wrong in
the communication. The only way to escape is to press the Real hardware
simulation again.
I think the simulation is a cost effective way to test attached hardware.

Program Send to Chip

This option will bring up the selected programmer or will program the chip
directly if this option is selected from the Programmer options.

Program send to chip shortcut , F4

Menu item Description
File Exit Return to editor
File, Test With this option you can set the logic level to the LPT pins. This is

only intended for the Sample Electronics programmer.
Buffer Clear Clears buffer
Buffer Load from file Loads a file into the buffer
Buffer Save to file Saves the buffer content to a file
Chip Identify Identifies the chip
Write buffer into chip Programs the buffer into the chip ROM or EEPROM
Read chipcode into
buffer

Reads the code or data from the chips code memory or data
memory

Ver. 1.11.6.3 BASCOM-AVR Page 37 of 420

Chip blank check Checks if the chip is blank
Chip erase Erase the content of both the program memory and the data

memory
Chip verify Verifies if the buffer is the same as the chip program or data

memory
Chip Set lockbits Writes the selected lock bits LB1 and/or LB2. Only an erase will

reset the lock bits
Chip autoprogram Erases the chip and programs the chip. After the programming is

completed, verification is performed.
RCEN Writes a bit to enable the internal oscillator. This RCEN bit is only

available on some AVR chips.

The following window will be shown:

Tools Terminal Emulator
With this option you can communicate via the RS-232 interface to the
microcomputer. The following window will appear:

Ver. 1.11.6.3 BASCOM-AVR Page 38 of 420

Information you type and information that the computer board sends are
displayed in the same window.

Note that you must use the same baud rate on both sides of the transmission.
If you compiled your program with the Compiler Settings at 4800 baud, you
must also set the Communication Settings to 4800 baud.
The setting for the baud rate is also reported in the report file.

File Upload
Uploads the current program in HEX format. This option is meant for
loading the program into a monitor program.

File Escape
Aborts the upload to the monitor program.

File Exit
Closes terminal emulator.

Terminal Clear
Clears the terminal window.

Ver. 1.11.6.3 BASCOM-AVR Page 39 of 420

Terminal Open Log
Open or closes a LOG file. When there is no LOG file selected you will be
asked to enter or select a filename. All info that is printed to the terminal
window is captured into the log file. The menu caption will change into 'Close
Log' and when you choose this option the file will be closed.

The terminal emulator has a strange bug that you can't select the menu
options by using the keyboard. This is an error in the terminal component and
I hope the third party will fix this bug.

Tools LCD Designer
With this option you can design special characters for LCD-displays.
The following window will appear:

The LCD-matrix has 7x5 points. The bottom row is reserved for the cursor but
can be used.
You can select a point by clicking the left mouse button. If a cell was selected
it will be deselected.

Clicking the Set All button will set all points.
Clicking the Clear All button will clear all points.

Ver. 1.11.6.3 BASCOM-AVR Page 40 of 420

When you are finished you can press the Ok button : a statement will be
inserted in your active program-editor window at the current cursor position.
The statement looks like this :

Deflcdchar ?,1,2,3,4,5,6,7,8
You must replace the ?-sign with a character number ranging from 0-7.

Tools Graphic Converter
The Graphic converter is intended to convert BMP files into BASCOM Graphic
Files (BGF) that can be used with Graphic LCD displays.

The following dialog box will be shown :

To load a picture click the Load button.
The picture can be 64 pixels high and 240 pixels width.
When the picture is larger it will be adjusted.

You can use your favorite graphic tool to create the bitmaps and use the
Graphic converter to convert them into black and white images.

When you click the Save-button the picture will be converted into black and
white.

Ver. 1.11.6.3 BASCOM-AVR Page 41 of 420

Any non-white color will be converted into black.

The resulting file will have the BGF extension.

Press the Ok-button to return to the editor.

The picture can be shown with the ShowPic statement.

Tools LIB Manager

With this option the following window will appear:

The Libraries are shown in the left pane. When you select one the routines
that are in the library will be shown in the right pane.

By selecting a routine you can DELETE it.

Ver. 1.11.6.3 BASCOM-AVR Page 42 of 420

By clicking the ADD button you can add an ASM routine to the library.

The COMPILE button works only in the commercial edition. When you click it
the selected library will be compiled into a LBX file.

A compiled LBX file does not contain comment and a huge amount of
mnemonics is compiled into object code. This object code is inserted at
compile time of the main BASIC program. And this results in faster
compilation.

The DEMO version comes with the compiled MCS.LIB file and is named
MCS.LBX. The ASM source is included with the commercial edition.

With the ability to create LBX files you can create add on packages for
BASCOM and sell them. The LBX files could be distributed for free and the
ASM source could be sold.

Two examples you will find soon :
- A library to read IDE harddisks.
- MODBUS slave routines

Libraries included with BASCOM-AVR:

LCD4.LIB
The built in LCD driver for the PIN mode is written to support a worst case
scenario where you use random pins of the microprocessor to drive the
LCD pins.
This makes it easy to design your PCB but it needs more code.

When you want to have less code you need fixed pins for the LCD display.
With the statement $LIB "LCD4.LBX" you specify that the LCD4.LIB will be
used.
The following connections are used in the asm code:
Rs = PortB.0
RW = PortB.1 we dont use the R/W option of the LCD in this version so
connect to ground
E = PortB.2
E2 = PortB.3 optional for lcd with 2 chips
Db4 = PortB.4 the data bits must be in a nibble to save code

Ver. 1.11.6.3 BASCOM-AVR Page 43 of 420

Db5 = PortB.5
Db6 = PortB.6
Db7 = PortB.7

You can change the lines from the lcd4.lib file to use another port.
Just change the address used :
.EQU LCDDDR=$17 ; change to another address for DDRD ($11)
.EQU LCDPORT=$18 ; change to another address for PORTD ($12)

See the demo lcdcustom4bit.bas in the SAMPLES dir.

Note that you still must select the display that you use with the CONFIG
LCD statement.

See also the lcd42.lib for driving displays with 2 E lines.

Note that LBX is a compiled LIB file. In order to change the routines you
need the commercial edition with the source code(lib files). After a change
you should compile the library with the library manager.

LCD4E2
The built in LCD driver for the PIN mode is written to support a worst case
scenario where you use random pins of the microprocessor to drive the
LCD pins.
This makes it easy to design your PCB but it needs more code.

When you want to have less code you need fixed pins for the LCD display.
With the statement $LIB "LCD4E2.LBX" you specify that the LCD4.LIB will
be used.
The following connections are used in the asm code:
Rs = PortB.0
RW = PortB.1 we don’t use the R/W option of the LCD in this version
so connect to ground
E = PortB.2

Ver. 1.11.6.3 BASCOM-AVR Page 44 of 420

E2 = PortB.3 the second E pin of the LCD
Db4 = PortB.4 the data bits must be in a nibble to save code
Db5 = PortB.5
Db6 = PortB.6
Db7 = PortB.7

You can change the lines from the lcd4e2.lib file to use another port.
Just change the address used :
.EQU LCDDDR=$17 ; change to another address for DDRD ($11)
.EQU LCDPORT=$18 ; change to another address for PORTD ($12)

See the demo lcdcustom4bit2e.bas in the SAMPLES dir.

Note that you still must select the display that you use with the CONFIG
LCD statement.

See also the lcd4.lib for driving a display with 1 E line.

A display with 2 E lines actually is a display with 2 control chips. They must
both be controlled. This library allows you to select the active E line from
your code.
In your basic code you must first select the E line before you use a LCD
statement.
The initialization of the display will handle both chips.

Note that LBX is a compiled LIB file. In order to change the routines you
need the commercial edition with the source code(lib files). After a change
you should compile the library with the library manager.

MCSBYTE

The numeric<>string conversion routines are optimized when used for byte,
integer,word and longs.

Ver. 1.11.6.3 BASCOM-AVR Page 45 of 420

When do you use a conversion routine ?
-When you use STR() , VAL() or HEX().
-When you print a numeric variable
-When you use INPUT on numeric variables.

To support all data types the built in routines are efficient in terms of code
size.
But when you use only conversion routines on bytes there is a overhead.

The mcsbyte.lib library is an optimized version that only support bytes.
Use it by including : $LIB "mcsbyte.lbx" in your code.

Note that LBX is a compiled LIB file. In order to change the routines you
need the commercial edition with the source code(lib files). After a change
you should compile the library with the library manager.

See also the library mcsbyteint.lib

MCSBYTEINT
The numeric<>string conversion routines are optimized when used for byte,
integer,word and longs.
When do you use a conversion routine ?
-When you use STR() , VAL() or HEX().
-When you print a numeric variable
-When you use INPUT on numeric variables.

To support all data types the built in routines are efficient in terms of code
size.
But when you use only conversion routines on bytes there is a overhead.

The mcsbyteint.lib library is an optimized version that only support bytes,
integers and words.
Use it by including : $LIB "mcsbyteint.lbx" in your code.

Ver. 1.11.6.3 BASCOM-AVR Page 46 of 420

Note that LBX is a compiled LIB file. In order to change the routines you
need the commercial edition with the source code(lib files). After a change
you should compile the library with the library manager.

See also the library mcsbyte.lib

Options Compiler
With this option, you can modify the compiler options.
The following TAB pages are available:

Options Compiler Chip
Options Compiler Output
Options Compiler Communication
Options Compiler I2C , SPI, 1WIRE
Options Compiler LCD

Ver. 1.11.6.3 BASCOM-AVR Page 47 of 420

Options Compiler Chip

The following options are available:

Options Compiler Chip
Item Description
Chip Selects the target chip. Each chip has a corresponding x.DAT file with

specifications of the chip. Note that some DAT files are not available
yet.

XRAM Selects the size of the external RAM. KB means Kilo Bytes.
For 32 KB you need a 62256 STATIC RAM chip.

HW Stack The amount of bytes available for the hard ware stack. When you use
GOSUB or CALL, you are using 2 bytes of HW stack space.
When you nest 2 GOSUB’s you are using 4 bytes (2*2). Most
statements need HW stack too. An interrupt needs 32 bytes.

Soft Stack Specifies the size of the software stack.
Each local variable uses 2 bytes. Each variable that is passed to a sub
program uses 2 bytes too. So when you have used 10 locals in a SUB

Ver. 1.11.6.3 BASCOM-AVR Page 48 of 420

and the SUB passes 3 parameters, you need 13 * 2 = 26 bytes.
Frame size Specifies the size of the frame.

Each local is stored in a space that is named the frame space.
When you have 2 local integers and a string with a length of 10, you
need a frame size of (2*2) + 11 = 15 bytes.
The internal conversion routines used when you use INPUT
num,STR(),VAL() etc, also use the frame. They need a maximum of 16
bytes. So for this example 15+16 = 31 would be a good value.

XRAM waitstate Select to insert a wait state for the external RAM.
External Access
enable

Select this option to allow external access of the micro. The 8515 for
example can use port A and C to control a RAM chip.

Default

Press or click this button to use the current Compiler Chip settings as
default for all new projects.

Options Compiler Output

Options Compiler Output
Item Description
Binary file Select to generate a binary file. (xxx.bin)
Debug file Select to generate a debug file (xxx.dbg)

Ver. 1.11.6.3 BASCOM-AVR Page 49 of 420

Hex file Select to generate an Intel HEX file (xxx.hex)
Report file Select to generate a report file (xxx.rpt)
Error file Select to generate an error file (xxx.err)
AVR Studio object
file

Select to generate an AVR Studio object file (xxx.obj)

Size warning Select to generate a warning when the code size exceeds the Flash
ROM size.

Swap words This option will swap the bytes of the object code words. Useful for
some programmers. Should be disabled for most programmers.
Don’t use it with the internal supported programmers.

Optimize code This options does additional optimization of the generated code.
Since it takes more time it is an option.

Show internal
variables

Internal variables are used. Most of them refer to a register. Like
_TEMP1 = R24. This option shows these variables in the report.

Options Compiler Communication

Options Compiler Communication
Item Description

Ver. 1.11.6.3 BASCOM-AVR Page 50 of 420

Baud rate Selects the baud rate for the serial statements. You can also type in a new
baud rate.

Frequency Select the frequency of the used crystal. You can also type in a new
frequency.

The settings for the internal hardware UART are:
No parity
8 data bits
1 stop bit

Note that these settings must match the settings of the terminal emulator. In
the simulator the output is always shown correct since the baud rate is not
taken in consideration during simulation. With real hardware when you print
data at 9600 baud, the terminal emulator will show weird characters when not
set to the same baud rate, in this example, to 9600 baud.

Options Compiler I2C, SPI, 1WIRE

Options Compiler I2C, SPI, 1WIRE

Ver. 1.11.6.3 BASCOM-AVR Page 51 of 420

Item Description
SCL port Select the port that serves as the SCL-line for the I2C related

statements.
SDA port Select the port that serves as the SDA-line for the I2C related

statements.
1WIRE Select the port that serves as the 1WIRE-line for the 1Wire related

statements.
Clock Select the port that serves as the clock-line for the SPI related

statements.
MOSI Select the port that serves as the MOSI-line for the SPI related

statements.
MISO Select the port that serves as the MISO-line for the SPI related

statements.
SS Select the port that serves as the SS-line for the SPI related

statements.
Use hardware SPI Select to use built-in hardware for SPI, otherwise software emulation

of SPI will be used. The 2313 does not have internal HW SPI so can
only be used with software spi mode.

Ver. 1.11.6.3 BASCOM-AVR Page 52 of 420

Options Compiler LCD

Options Compiler LCD
Item Description
LCD type The LCD display used.
Bus mode The LCD can be operated in BUS mode or in PIN mode. In PIN mode,

the data lines of the LCD are connected to the processor pins. In BUS
mode the data lines of the LCD are connected to the data lines of the
BUS.
Select 4 when you have only connect DB4-DB7. When the data mode
is 'pin' , you should select 4.

Data mode Select the mode in which the LCD is operating. In PIN mode,
individual processor pins can be used to drive the LCD. In BUS mode,
the external data bus is used to drive the LCD.

LCD address In BUS mode you must specify which address will select the enable
line of the LCD display. For the STK200, this is C000 = A14 + A15.

RS address In BUS mode you must specify which address will select the RS line of
the LCD display. For the STK200, this is 8000 = A15

Enable For PIN mode, you must select the processor pin that is connected to
the enable line of the LCD display.

RS For PIN mode, you must select the processor pin that is connected to

Ver. 1.11.6.3 BASCOM-AVR Page 53 of 420

the RS line of the LCD display.
DB7-DB4 For PIN mode, you must select the processor pins that are connected

to the upper four data lines of the LCD display.
Make upper 3 bits
high in LCd
designer

Some displays require that for setting custom characters, the upper 3
bits must be 1. Should not be used by default.

Options Communication
With this option, you can modify the communication settings for the terminal
emulator.

Item Description
Comport The communication port of your PC that you use for ther terminal emulator.
Baud rate The baud rate to use.
Parity Parity, default None.

Ver. 1.11.6.3 BASCOM-AVR Page 54 of 420

Data bits Number of data bits, default 8.
Stop bits Number of stop bits, default 1.
Handshake The handshake used, default is none.
Emulation Emulation used, default BBS ANSI.
Font Font type and color used by the emulator.
Back color Background color of the terminal emulator.

Note that the baud rate of the terminal emulator and the baud rate setting of
the compiler options, must be the same in order to work correctly.

Options Environment

OPTION DESCRIPTION
Auto Indent When you press return, the cursor is set to the next line at the

current column position

Ver. 1.11.6.3 BASCOM-AVR Page 55 of 420

Don't change case When set, the reformat won't change the case of the text.
Default is that the text is reformatted so every word begins with
upper case.

Reformat BAS files Reformat files when loading them into the editor.
This is only necessary when you are loading files that where
created with another editor. Normally you won't need to set this
option.

Reformat code Reformat code when entered in the editor.
Smart TAB When set, a TAB will go to the column where text starts on the

previous line.
Syntax highlighting This options highlights BASCOM statements in the editor.
Show margin Shows a margin on the right side of the editor.
Comment The position of the comment. Comment is positioned at the right of

your source code.
TAB-size Number of spaces that are generated for a TAB.
Keymapping Choose default, Classic, Brief or Epsilon.
No reformat
extension

File extensions separated by a space that will not be reformatted
when loaded.

Size of new editor
window

When a new editor window is created you can select how it will be
made. Normal or Maximized (full window)

Ver. 1.11.6.3 BASCOM-AVR Page 56 of 420

OPTION DESCRIPTION
Background color The background color of the editor window.
Keyword color The color of the reserved words. Default Navy.

The keywords can be displayed in bold too.
Comment color The color of comment. Default green.

Comment can be shown in Italic too.
ASM color Color to use for ASM statements. Default purple.
HW registers color The color to use for the hardware registers/ports. Default maroon.
Editor font Click on this label to select another font for the editor window.

Ver. 1.11.6.3 BASCOM-AVR Page 57 of 420

OPTION DESCRIPTION
Tooltips Show tool tips.
Show toolbar Shows the toolbar with the shortcut icons.
Save File As … for new
files.

Will display a dialogbox so you can give new files a name when
they must be saved. When you dont select this option the default
name will be give to the file (nonamex.bas). Where x is a
number.

Program after Compile This option will run the programmer after the program is
compiled with success.

File location Double click to select a directory where your program files are
stored. By default Windows will use the My Documents path.

Use HTML Help HTML help is available for download and when your OS
supports HTML help, you can turn this option on.
W98,W98SE,W98ME and W2000 support HTML Help.

Ver. 1.11.6.3 BASCOM-AVR Page 58 of 420

Options Simulator
With this option you can modify the simulator settings.

OPTION DESCRIPTION
Use integrated
simulator

Set this option to use BASCOM’s simulator. You can also use AVR
Studio by clearing this option.

Run simulator after
compilation

Run the selected simulator after a successful compilation.

Program The path with the program name of the simulator.
Parameter The parameter to pass to the program. {FILE}.OBJ will supply the

name of the current program with the extension .OBJ to the
simulator.

Options Programmer
With this option you can modify the programmer settings.

Ver. 1.11.6.3 BASCOM-AVR Page 59 of 420

OPTION DESCRIPTION
Programmer Select one from the list.
Play sound Name of a WAV file to be played when programming is finished.

Press the ..-button to select the file.
Erase Warning Set this option when you want a confirmation when the chip is erased.
Auto flash Some programmers support auto flash. Pressing F4 will program the

chip without showing the programmer window.
Auto verify Some programmers support verifying. The chip content will be verified

after programming.
Upload code and
data

Set this option to program both the FLASH memory and the EEPROM
memory

 Parallel printer port programmers
LPT address Port address of the LPT that is connected to the programmer.

 Serial port programmer
COM port The com port the programmer is connected to.
STK500 EXE The path of stk500.exe. This is the full file location to the files

stk500.exe that comes with the STK500.

 Other
Use HEX Select when a HEX file must be sent instead of the bin file.
Program The program to execute. This is your programmer software.
Parameter The optional parameter that the program might need.

Options Monitor
With this option you can modify the monitor settings.

OPTION DESCRIPTION
Upload speed Selects the baud rate used for uploading
Monitor prefix String that will be send to the monitor before the upload starts
Monitor suffix String that us sent to the monitor after the download is completed.

Ver. 1.11.6.3 BASCOM-AVR Page 60 of 420

Monitor delay Time in millions of seconds to wait after a line has been sent to the
monitor.

Prefix delay Time in millions of seconds to wait after a prefix has been sent to the
monitor.

Options Printer
With this option you can modify the printer settings.
There are only settings to change the margins of the paper.

OPTION DESCRIPTION
Left The left margin.
Right The right margin.
Top The top margin.
Bottom The bottom margin.

Window Cascade
Cascade all open editor windows.

Window Tile
Tile all open editor windows.

Window Arrange Icons
Arrange the icons of the minimized editor windows.

Window Minimize All
Minimize all open editor windows.

Ver. 1.11.6.3 BASCOM-AVR Page 61 of 420

Help About
This option shows an about box as showed below.

Your serial number is shown in the about box.
You will need this when you have questions about the product.
The library version is also shown. In this case, it is 1.00.
You can compare it with the one on our web site in case you need an update.

Click on Ok to return to the editor.

Help Index
Shows the BASCOM help file.

Ver. 1.11.6.3 BASCOM-AVR Page 62 of 420

When you are in the editor window, the current word will be used as a
keyword.

Help on Help
Shows help on how to use the Windows help system.

Help Credits
Shows a form with credits to people I would like to thank for their contributions
to BASCOM.

BASCOM Editor Keys
Key Action
LEFT ARROW One character to the left
RIGHT ARROW One character to the right
UP ARROW One line up
DOWN ARROW One line down
HOME To the beginning of a line
END To the end of a line
PAGE UP Up one window
PAGE DOWN Down one window
CTRL+LEFT One word to the left
CTRL+RIGHT One word to the right
CTRL+HOME To the start of the text
CTRL+END To the end of the text
CTRL+ Y Delete current line
INS Toggles insert/overstrike mode
F1 Help (context sensitive)
F2 Run simulator

Ver. 1.11.6.3 BASCOM-AVR Page 63 of 420

F3 Find next text
F4 Send to chip (run flash programmer)
F5 Run
F7 Compile File
F8 Step
F9 Set breakpoint
F10 Run to
CTRL+F7 Syntax Check
CTRL+F Find text
CTRL+G Go to line
CTRL+K+x Toggle bookmark. X can be 1-8
CTRL+L LCD Designer
CTRL+M File Simulation
CTRL+N New File
CTRL+O Load File
CTRL+P Print File
CTRL+Q+x Go to Bookmark. X can be 1-8
CTRL+R Replace text
CTRL+S Save File
CTRL+T Terminal emulator
CTRL+P Compiler Options
CTRL+W Show result of compilation
CTRL+X Cut selected text to clipboard
CTRL+Z Undo last modification
SHIFT+CTRL+Z Redo last undo
CTRL+INS Copy selected text to clipboard
SHIFT+INS Copy text from clipboard to editor
CTRL+SHIFT+J Indent Block
CTRL+SHIFT+U Unindent Block
Select text Hold the SHIFT key down and use the cursor keys to select text. or

keep the left mouse key pressed and tag the cursor over the text to
select.

Ver. 1.11.6.3 BASCOM-AVR Page 64 of 420

Developing Order
• Start BASCOM;
• Open a file or create a new one;
• Check the chip settings, baud rate and frequency settings for the target

system;
• Save the file;
• Compile the file;
• If an error occurs fix it and recompile (F7);
• Run the simulator;
• Program the chip(F4);

Memory usage
Every variable uses memory. This memory is also called SRAM.
The available memory depends on the chip.

A special kind of memory are the registers in the AVR. Registers 0-31 have
addresses 0-31.
Almost all registers are used by the compiler or might be used in the future.
Which registers are used depends on the statements you used.

This brings us back to the SRAM.
No SRAM is used by the compiler other than the space needed for the
software stack and frame.
Some statements might use some SRAM. When this is the case it is
mentioned in the help topic of that statement.

Each 8 used bits occupy one byte.
Each byte occupies one byte.
Each integer/word occupies two bytes.
Each Long or Single occupies four bytes.

Ver. 1.11.6.3 BASCOM-AVR Page 65 of 420

Each String occupies at least 2 byes.
A string with a length of 10. occupies 11 byes. The extra byte is needed to
indicate the end of the string.

Use bits or bytes where you can to save memory. (not allowed for negative
values)

The software stack is used to store the addresses of LOCAL variables and for
variables that are passed to SUB routines.
Each LOCAL variable and passed variable to a SUB, uses two bytes to store
the address. So when you have a SUB routine in your program that passes 10
variables, you need 10 * 2 = 20 bytes. When you use 2 LOCAL variables in
the SUB program that receives the 10 variables, you need additional 2 * 2 = 4
bytes.

The software stack size can be calculated by taking the maximum number of
parameters in a SUB routine, adding the number of LOCAL variables and
multiplying the result by 2. To be safe, add 4 more bytes for internally used
LOCAL variables.

LOCAL variables are stored in a place that is named the frame.
When you have a LOCAL STRING with a size of 40 bytes, and a LOCAL
LONG, you need 41 + 4 bytes = 45 bytes of frame space.

When you use conversion routines such as STR(), VAL() etc. that convert
from numeric to string and vice versa, you also need a frame. It should be 16
bytes in that case.
Add additional space for the local data.

Note that the use of the INPUT statement with a numeric variable, or the use
of the PRINT/LCD statement with a numeric variable, will also force you to
reserve 16 bytes of frame space. This because these routines use the internal
numeric<>string conversion routines.

XRAM
You can easy add external memory to an 8515. Then XRAM will become
available.(extended memory).

Ver. 1.11.6.3 BASCOM-AVR Page 66 of 420

When you add a 32KB RAM, the first address wil be 0.
But because the XRAM can only start after the SRAM, which is &H0260, the
lower memory locations of the XRAM will not be used.

ERAM
Most AVR chips have internal EEPROM on board.
This EEPROM can be used to store and retrieve data.
In BASCOM, this data space is called ERAM.
An important difference is that an ERAM variable can be written for a
maximum of 100.000 times. So only assign an ERAM variable when it is
needed and not in a loop.

Constant code usage
Constants are stored in a constant table.
Each used constant in your program will end up in the constant table.

For example:
Print "ABCD"
Print "ABCD"

This example will only store one constant (ABCD).

Print "ABCD"
Print "ABC"

In this example, two constants will be stored because the strings differ.

Error Codes
The following table lists errors that can occur.

Ver. 1.11.6.3 BASCOM-AVR Page 67 of 420

Error Description
1 Unknown statement
2 Unknown structure EXIT statement
3 WHILE expected
4 No more space for IRAM BIT
5 No more space for BIT
6 . expected in filename
7 IF THEN expected
8 BASIC source file not found
9 Maximum 128 aliases allowed
10 Unknown LCD type
11 INPUT, OUTPUT, 0 or 1 expected
12 Unknown CONFIG parameter
13 CONST already specified
14 Only IRAM bytes supported
15 Wrong data type
16 Unknown Definition
17 9 parameters expected
18 BIT only allowed with IRAM or SRAM
19 STRING length expected (DIM S AS STRING * 12 ,for example)
20 Unknown DATA TYPE
21 Out of IRAM space
22 Out of SRAM space
23 Out of XRAM space
24 Out of EPROM space
25 Variable already dimensioned
26 AS expected
27 parameter expected
28 IF THEN expected
29 SELECT CASE expected
30 BIT's are GLOBAL and can not be erased
31 Invalid data type

Ver. 1.11.6.3 BASCOM-AVR Page 68 of 420

32 Variable not dimensioned
33 GLOBAL variable can not be ERASED
34 Invalid number of parameters
35 3 parameters expected
36 THEN expected
37 Invalid comparison operator
38 Operation not possible on BITS
39 FOR expected
40 Variable can not be used with RESET
41 Variable can not be used with SET
42 Numeric parameter expected
43 File not found
44 2 variables expected
45 DO expected
46 Assignment error
47 UNTIL expected
50 Value doesn't fit into INTEGER
51 Value doesn't fit into WORD
52 Value doesn't fit into LONG
60 Duplicate label
61 Label not found
62 SUB or FUNCTION expected first
63 Integer or Long expected for ABS()
64 , expected
65 device was not OPEN
66 device already OPENED
68 channel expected
70 BAUD rate not possible
71 Different parameter type passed then declared
72 Getclass error. This is an internal error.
73 Printing this FUNCTION not yet supported
74 3 parameters expected

Ver. 1.11.6.3 BASCOM-AVR Page 69 of 420

80 Code does not fit into target chip
81 Use HEX(var) instead of PRINTHEX
82 Use HEX(var) instead of LCDHEX
85 Unknown interrupt source
86 Invalid parameter for TIMER configuration
87 ALIAS already used
88 0 or 1 expected
89 Out of range : must be 1-4
90 Address out of bounds
91 INPUT, OUTPUT, BINARY, or RANDOM expected
92 LEFT or RIGHT expected
93 Variable not dimensioned
94 Too many bits specified
95 Falling or rising expected for edge
96 Prescale value must be 1,8,64,256 or 1024
97 SUB or FUNCTION must be DECLARED first
98 SET or RESET expected
99 TYPE expected
100 No array support for IRAM variables
101 Can't find HW-register
102 Error in internal routine
103 = expected
104 LoadReg error
105 StoreBit error
106 Unknown register
107 LoadnumValue error
108 Unknown directive in device file
109 = expected in include file for .EQU
110 Include file not found
111 SUB or FUNCTION not DECLARED
112 SUB/FUNCTION name expected
113 SUB/FUNCTION already DECLARED

Ver. 1.11.6.3 BASCOM-AVR Page 70 of 420

114 LOCAL only allowed in SUB or FUNCTION
115 #channel expected
116 Invalid register file
117 Unknown interrupt
200 .DEF not found
201 Low Pointer register expected
202 .EQU not found, probably using functions that are not supported by the selected

chip
203 Error in LD or LDD statement
204 Error in ST or STD statement
205 } expected
206 Library file not found
207 Library file already registered
210 Bit definition not found
211 External routine not found
212 LOW LEVEL, RISING or FALLING expected
213 String expected for assignment
214 Size of XRAM string 0
215 Unknown ASM mnemonic
216 CONST not defined
217 No arrays allowed with BIT/BOOLEAN data type
218 Register must be in range from R16-R31
219 INT0-INT3 are always low level triggered in the MEGA
220 Forward jump out of range
221 Backward jump out of range
222 Illegal character
223 * expected
224 Index out of range
225 () may not be used with constants
226 Numeric of string constant expected
227 SRAM start greater than SRAM end
228 DATA line must be placed after the END statement
229 End Sub or End Function expected

Ver. 1.11.6.3 BASCOM-AVR Page 71 of 420

230 You can not write to a PIN register
231 TO expected
232 Not supported for the selected micro
233 READ only works for normal DATA lines, not for EPROM data
234 ') block comment expected first
235 '(block comment expected first
236 Value does not fit into byte
238 Variable is not dimensioned as an array
239 Invalid code sequence because of AVR hardware bug
240 END FUNCTION expected
241 END SUB expected
242 Source variable does not match the target variable
243 Bit index out of range for supplied data type
244 Do not use the Y pointer
245 No arrays supported with IRAM variable
246 No more room for .DEF definitions
247 . expected
248 BYVAL should be used in declaration
249 ISR already defined
250 GOSUB expected
251 Label must be named SECTIC
252 Integer or Word expected
253 ERAM variable can not be used
254 Variable expected
255 Z or Z+ expected
256 Single expected
257 "" expected
258 SRAM string expected
259 - not allowed for a byte
260 Value larger than string length
261 Array expected
262 ON or OFF expected

Ver. 1.11.6.3 BASCOM-AVR Page 72 of 420

263 Array index out of range
264 Use ECHO OFF and ECHO ON instead
999 DEMO/BETA only supports 2048 bytes of code

Other error codes are internal ones. Please report them when you get them.

Additional Hardware
Of course just running a program on the chip is not enough. You will probably
attach all kind of electronics to the processor ports.
BASCOM supports a lot of hardware and so has lots of hardware related
statements.

Before explaining about programming the additional hardware, it might be
better to talk about the chip.

The AVR internal hardware
Attaching an LCD display
Using the I2C protocol
Using the 1WIRE protocol
Using the SPI protocol

You can attach additional hardware to the ports of the microprocessor.
The following statements will become available:

I2CSEND and I2CRECEIVE and other I2C related statements.
CLS, LCD, DISPLAY and other related LCD-statements.

1WRESET , 1WWRITE and 1WREAD

Ver. 1.11.6.3 BASCOM-AVR Page 73 of 420

AT90S2313

This page is intended to show user comments about the chip.
Your comment is welcome.

AT90S2333

This page is intended to show user comments about the chip.
Your comment is welcome.

Ver. 1.11.6.3 BASCOM-AVR Page 74 of 420

AT90S4433

This page is intended to show user comments about the chip.
Your comment is welcome.

Ver. 1.11.6.3 BASCOM-AVR Page 75 of 420

AVR Internal Hardware
The AVR chips all have internal hardware that can be used.
For the description we have used the 8515 so some described hardware will
not be available when you select a 2313 for example.

Timer / Counters
The AT90S8515 provides two general purpose Timer/Counters - one 8-bit T/C
and one 16-bit T/C. The Timer/Counters have individual pre-scaling selection
from the same 10-bit pre-scaling timer. Both Timer/Counters can either be

Ver. 1.11.6.3 BASCOM-AVR Page 76 of 420

used as a timer with an internal clock time base or as a counter with an
external pin connection which triggers the counting.

More about TIMERO
More about TIMER1

The WATCHDOG Timer.

Almost all AVR chips have the ports B and D. The 40 pin devices also have
ports A and C that also can be used for addressing an external RAM chip.
Since all ports are identical but the PORT B and PORT D have alternative
functions, only these ports are described.

PORT B

PORT D

Ver. 1.11.6.3 BASCOM-AVR Page 77 of 420

AVR Internal Registers
You can manipulate the register values directly from BASIC. They are also
reserved words. The internal registers for the AVR90S8515 are :

Addr. Register

$3F SREG I T H S V N Z C

$3E SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

$3D SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

$3C Reserved

$3B GIMSK INT1 INT0 - - - - - -

$3A GIFR INTF1 INTF0

$39 TIMSK TOIE1 OCIE1A OCIE1B - TICIE1 - TOIE0 -

$38 TIFR TOV1 OCF1A OCF1B -ICF1 -TOV0 -

$37 Reserved

$36 Reserved

$35 MCUCR SRE SRW SE SM ISC11 ISC10 ISC01 ISC00

$34 Reserved

$33 TCCR0 - - - - - CS02 CS01 CS00

$32 TCNT0 Timer/Counter0 (8 Bit)

$31 Reserved

$30 Reserved

$2F TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - -PWM11 PWM10

$2E TCCR1B ICNC1 ICES1 - - CTC1 CS12 CS11 CS10

$2D TCNT1H Timer/Counter1 - Counter Register High Byte

$2C TCNT1L Timer/Counter1 - Counter Register Low Byte

$2B OCR1AH Timer/Counter1 - Output Compare Register A High Byte

$2A OCR1AL Timer/Counter1 - Output Compare Register A Low Byte

$29 OCR1BH Timer/Counter1 - Output Compare Register B High Byte

$28 OCR1BL Timer/Counter1 - Output Compare Register B Low Byte

$27 Reserved

$26 Reserved

$25 ICR1H Timer/Counter1 - Input Capture Register High Byte

$24 ICR1L Timer/Counter1 - Input Capture Register Low Byte

$23 Reserved

$22 Reserved

$21 WDTCR - - - WDTOE WDE WDP2 WDP1 WDP0

Ver. 1.11.6.3 BASCOM-AVR Page 78 of 420

$20 Reserved

$1F Reserved - - - - - - - EEAR8

$1E EEARL EEPROM Address Register Low Byte

$1D EEDR EEPROM Data Register

$1C EECR - - - - - EEMWE EEWE EERE

$1B PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1
PORTA0

$1A DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

$19 PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

$18 PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1
PORTB0

$17 DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

$16 PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

$15 PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1
PORTC0

$14 DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

$13 PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

$12 PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1
PORTD0

$11 DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

$10 PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

$0F SPDR SPI Data Register

$0E SPSR SPIF WCOL - - - - - -

$0D SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

$0C UDR UART I/O Data Register

$0B USR RXC TXC UDRE FE OR - - -

$0A UCR RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8

$09 UBRR UART Baud Rate Register

$08 ACSR ACD - ACO ACI ACIE ACIC ACIS1 ACIS0

$00 Reserved

The registers and their addresses are defined in the xxx.DAT files which are
placed in the BASCOM-AVR application directory.

The registers can be used as normal byte variables.
PORTB = 40 will place a value of 40 into port B.

Ver. 1.11.6.3 BASCOM-AVR Page 79 of 420

Note that internal registers are reserved words. This means that they can't be
dimensioned as BASCOM variables!

So you can't use the statement DIM SREG As Byte because SREG is an
internal register.
You can however manipulate the register with the SREG = value statement.

AVR Internal Hardware TIMER0
The 8-Bit Timer/Counter0

The 8-bit Timer/Counter0 can select its clock source from CK, pre-scaled CK,
or an external pin. In addition it can be stopped.
The overflow status flag is found in the Timer/Counter Interrupt Flag Register -
TIFR. Control signals are found in the Timer/Counter0 Control Register -
TCCR0. The interrupt enable/disable settings for Timer/Counter0 are found in
the Timer/Counter Interrupt Mask Register - TIMSK.

When Timer/Counter0 is externally clocked, the external signal is
synchronized with the oscillator frequency of the CPU. To assure proper
sampling of the external clock, the minimum time between two external clock
transitions must be at least one internal CPU clock period. The external clock
signal is sampled on the rising edge of the internal CPU clock.

Ver. 1.11.6.3 BASCOM-AVR Page 80 of 420

The 8-bit Timer/Counter0 features both a high resolution and a high accuracy
usage with the lower pre-scaling opportunities. Similarly, the high pre-scaling
opportunities make the Timer/Counter0 useful for lower speed functions or
exact timing functions with infrequent actions.

AVR Internal Hardware TIMER1
The 16-Bit Timer/Counter1 (8515 other timers may be different)

The 16-bit Timer/Counter1 can select clock source from CK, pre-scaled CK,
or an external pin. In addition it can be stopped.
The different status flags (overflow, compare match and capture event) and
control signals are found in the Timer/Counter1 Control Registers - TCCR1A
and TCCR1B.

The interrupt enable/disable settings for Timer/Counter1 are found in the
Timer/Counter Interrupt Mask Register - TIMSK.

When Timer/Counter1 is externally clocked, the external signal is

Ver. 1.11.6.3 BASCOM-AVR Page 81 of 420

synchronized with the oscillator frequency of the CPU. To assure proper
sampling of the external clock, the minimum time between two external clock
transitions must be at least one internal CPU clock period.
The external clock signal is sampled on the rising edge of the internal CPU
clock.

The 16-bit Timer/Counter1 features both a high resolution and a high
accuracy usage with the lower prescaling opportunities.
Similarly, the high prescaling opportunities make the Timer/Counter1 useful
for lower speed functions or exact timing functions with infrequent actions.

The Timer/Counter1 supports two Output Compare functions using the Output
Compare Register 1 A and B -OCR1A and OCR1B as the data sources to be
compared to the Timer/Counter1 contents.

The Output Compare functions include optional clearing of the counter on
compareA match, and actions on the Output Compare pins on both compare
matches.

Timer/Counter1 can also be used as a 8, 9 or 10-bit Pulse With Modulator. In
this mode the counter and the OCR1A/OCR1B registers serve as a dual
glitch-free stand-alone PWM with centered pulses.

The Input Capture function of Timer/Counter1 provides a capture of the
Timer/Counter1 contents to the Input Capture Register - ICR1, triggered by an
external event on the Input Capture Pin - ICP. The actual capture event
settings are defined by the Timer/Counter1 Control Register -TCCR1B.
In addition, the Analog Comparator can be set to trigger the Input Capture.

Ver. 1.11.6.3 BASCOM-AVR Page 82 of 420

AVR Internal Hardware Watchdog timer
The Watchdog Timer

The Watchdog Timer is clocked from a separate on-chip oscillator which runs
at 1MHz. This is the typical value at VCC = 5V.

By controlling the Watchdog Timer pre-scaler, the Watchdog reset interval
can be adjusted from 16K to 2,048K cycles (nominally 16 - 2048 ms). The
RESET WATCHDOG - instruction resets the Watchdog Timer.
Eight different clock cycle periods can be selected to determine the reset
period.
If the reset period expires without another Watchdog reset, the AT90Sxxxx
resets and executes from the reset vector.

Ver. 1.11.6.3 BASCOM-AVR Page 83 of 420

AVR Internal Hardware Port B
Port B

Port B is an 8-bit bi-directional I/O port. Three data memory address locations
are allocated for the Port B, one each for the Data Register - PORTB,
$18($38), Data Direction Register - DDRB, $17($37) and the Port B Input Pins
- PINB, $16($36). The Port B Input Pins address is read only, while the Data
Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output
buffers can sink 20mA and thus drive LED displays directly. When pins PB0 to
PB7 are used as inputs and are externally pulled low, they will source current
if the internal pull-up resistors are activated.
The Port B pins with alternate functions are shown in the following table:

When the pins are used for the alternate function the DDRB and PORTB
register has to be set according to the alternate function description.

Port B Pins Alternate Functions
Port Pin Alternate Functions
PORTB.0 T0 (Timer/Counter 0 external counter input)
PORTB.1 T1 (Timer/Counter 1 external counter input)
PORTB.2 AIN0 (Analog comparator positive input)
PORTB.3 AIN1 (Analog comparator negative input)
PORTB.4 SS (SPI Slave Select input)
PORTB.5 MOSI (SPI Bus Master Output/Slave Input)
PORTB.6 MISO (SPI Bus Master Input/Slave Output)
PORTB.7 SCK (SPI Bus Serial Clock)

The Port B Input Pins address - PINB - is not a register, and this address
enables access to the physical value on each Port B pin. When reading
PORTB, the PORTB Data Latch is read, and when reading PINB, the logical
values present on the pins are read.

Ver. 1.11.6.3 BASCOM-AVR Page 84 of 420

PortB As General Digital I/O
All 8 bits in port B are equal when used as digital I/O pins. PORTB.X, General
I/O pin: The DDBn bit in the DDRB register selects the direction of this pin, if
DDBn is set (one), PBn is configured as an output pin. If DDBn is cleared
(zero), PBn is configured as an input pin. If PORTBn is set (one) when the pin
configured as an input pin, the MOS pull up resistor is activated.
To switch the pull up resistor off, the PORTBn has to be cleared (zero) or the
pin has to be configured as an output pin.

DDBn Effects on Port B Pins

DDBn PORTBn I/O Pull up Comment
0 0 Input No Tri-state (Hi-Z)
0 1 Input Yes PBn will source current if ext. pulled low.
1 0 Output No Push-Pull Zero Output
1 1 Output No Push-Pull One Output

AVR Internal Hardware Port D
Port D

Port D Pins Alternate Functions

Port Pin Alternate Function
PORTD.0 RDX (UART Input line)
PORTD.1 TDX (UART Output line)
PORTD.2 INT0 (External interrupt 0 input)
PORTD.3 INT1 (External interrupt 1 input)
PORTD.5 OC1A (Timer/Counter1 Output compareA match output)
PORTD.6 WR (Write strobe to external memory)
PORTD.7 RD (Read strobe to external memory)

RD - PORTD, Bit 7
RD is the external data memory read control strobe.

Ver. 1.11.6.3 BASCOM-AVR Page 85 of 420

WR - PORTD, Bit 6
WR is the external data memory write control strobe.

OC1- PORTD, Bit 5
Output compare match output: The PD5 pin can serve as an external output
when the Timer/Counter1 com-pare matches.
The PD5 pin has to be configured as an out-put (DDD5 set (one)) to serve this
f unction. See the Timer/Counter1 description for further details, and how to
enable the output. The OC1 pin is also the output pin for the PWM mode timer
function.

INT1 - PORTD, Bit 3
External Interrupt source 1: The PD3 pin can serve as an external interrupt
source to the MCU. See the interrupt description for further details, and how
to enable the source

INT0 - PORTD, Bit 2
INT0, External Interrupt source 0: The PD2 pin can serve as an external
interrupt source to the MCU. See the interrupt description for further details,
and how to enable the source.

TXD - PORTD, Bit 1
Transmit Data (Data output pin for the UART). When the UART transmitter is
enabled, this pin is configured as an output regardless of the value of DDRD1.

RXD - PORTD, Bit 0
Receive Data (Data input pin for the UART). When the UART receiver is
enabled this pin is configured as an output regardless of the value of DDRD0.
When the UART forces this pin to be an input, a logical one in PORTD0 will
turn on the internal pull-up.

When pins TXD and RXD are not used for RS-232 they can be used as an
input or output pin.
No PRINT, INPUT or other RS-232 statement may be used in that case.
The UCR register will by default not set bits 3 and 4 that enable the TXD and
RXD pins for RS-232 communication. It is however reported that this not
works for all chips. In this case you must clear the bits in the UCR register

Ver. 1.11.6.3 BASCOM-AVR Page 86 of 420

with the following statements:
RESET UCR.3
RESET UCR.4

Adding XRAM

Some AVR chips like the 8515 for example can be extended with external
RAM memory.

On these chips Port A serves as a Multiplexed Address/Data input/output.
Port C also serves as Address output when using external SRAM.

The maximum size of a XRAM chip can be 64Kbytes.

The STK200 has a 62256 ram chip (32K x 8 bit).

Here is some info from the BASCOM userlist :

If you do go with the external ram , be careful of the clock speed.
Using a 4Mhz crystal , will require a SRAM with 70nS access time
or better. Also the data latch (74HC573) will have to be from a faster
family such as a 74FHC573 if you go beyond 4Mhz.

You can also program an extra wait state, which slow it down a bit.

Here you find a pdf file showing STK200 schematics:
http://www.avr-forum.com/Stk200_schematic.pdf

If you use 32kRAM, then connect the /CS signal to A15 which give
to the range of &H0000 to &H7FFF, if you use a 64kRAM, then
tie /CS to GND, so the RAM is selected all the time.

Thanks to Colin O'Flynn for creating this circuit :

Ver. 1.11.6.3 BASCOM-AVR Page 87 of 420

Attaching an LCD Display

A LCD display can be connected with two methods.

• By wiring the LCD-pins to the processor port pins.

This is the pin mode. The advantage is that you can choose the pins and
that they don't have to be on the same port. This can make your PCB
design simple. The disadvantage is that more code is needed.

• By attaching the LCD-data pins to the data bus. This is convenient when
you have an external RAM chip and will adds little code.

The LCD-display can be connected in PIN mode as follows:

Ver. 1.11.6.3 BASCOM-AVR Page 88 of 420

LCD DISPLAY PORT PIN
DB7 PORTB.7 14
DB6 PORTB.6 13
DB5 PORTB.5 12
DB4 PORTB.4 11
E PORTB.3 6
RS PORTB.2 4
RW Ground 5
Vss Ground 1
Vdd +5 Volt 2
Vo 0-5 Volt 3

This leaves PORTB.1 and PORTB.0 and PORTD for other purposes.
You can change these settings from the Options LCD menu.

BASCOM supports many statements to control the LCD-display.
For those who want to have more control the example below shows how to
use the internal routines.

$ASM
Ldi _temp1, 5 'load register R24 with value
Rcall _Lcd_control 'it is a control value to control the display
Ldi _temp1,65 'load register with new value (letter A)
Rcall _Write_lcd 'write it to the LCD-display
$END ASM

Note that _lcd_control and _write_lcd are assembler subroutines which can
be called from BASCOM.

See the manufacturer's details from your LCD display for the correct
assignment.

Ver. 1.11.6.3 BASCOM-AVR Page 89 of 420

Using the I2C protocol
The I2C protocol is a 2-wire protocol designed by Philips. Of course you also
need power and ground so it really needs 4 wires.

The I2C protocol was invented for making designs of TV PCB's more simple.
But with the availability of many I2C chips, it is ideal for the hobbyist too.

The PCF8574 is a nice chip - it is an I/O extender with 8 pins that you can use
either as input or output.

The design below shows how to implement an I2C-bus. The circuit shown is
for the 8051 micro the AT89C2051 which is pin compatible with the
AT90S2313. It also works for the AVR.

R1 and R2 are 330 ohm resistors.
R3 and R4 are 10 kilo-ohm resistors. For 5V, 4K7 is a good value in
combination with AVR chips.

You can select which port pins you want to use for the I2C interface with the
compiler settings.

Ver. 1.11.6.3 BASCOM-AVR Page 90 of 420

Using the 1 WIRE protocol
The 1 wire protocol was invented by Dallas Semiconductors and needs only 1
wire for the communication. You also need power and ground of course.

This topic is written by Göte Haluza. He tested the new 1wire search routines
and is building a weather station. Thanks!

Dallas Semiconductor (DS) 1wire. This is a brief description of DS 1wirebus
when used in combination with BASCOM. For more detailed explanations
about the 1w-bus, please go to http://www.dalsemi.com. Using BASCOM,
makes the world a lot easier. This paper will approach the subject from a
"BASCOM-user-point-of-view".

1wire-net is a serial communication protocol, used by DS devices. The bus
could be implemented in two basic ways :

With 2 wires, then DQ and ground is used on the device. Power is supplied
on the DQ line, which is +5V, and used to charge a capacitor in the DS
device. This power is used by the device for its internal needs during
communication, which makes DQ go low for periods of time. This bus is
called the 1wirebus.

With 3 wires, when +5V is supplied to the VDD line of the device, and DQ +
ground as above. This bus is called the 2wirebus.

Ver. 1.11.6.3 BASCOM-AVR Page 91 of 420

So, the ground line is "not counted" by DS. But hereafter we use DS naming
conventions.

How it works. (1wire)

The normal state of the bus is DQ=high. Through DQ the device gets its
power, and performs the tasks it is designed for.

When the host (your micro controller (uC)) wants something to happen with
the 1w-bus, it issues a reset-command. That is a very simple electric function
that happens then; the DQ goes active low for a time (480uS on original DS
1w-bus). This put the DS-devices in reset mode; then (they) send a presence
pulse, and then (they) listen to the host.

The presence pulse is simply an active low, this time issued by the device(s).

Now, the host cannot know what is on the bus, it is only aware of that at least
1 DS device is attached on the bus.

All communication on the 1w-bus is initialized by the host, and issued by time-
slots of active-low on a normally high line (DQ), issued by the device, which is
sending at the moment. The devices(s) internal capacitor supplies its power
needs during the low-time.

How you work with 1w-bus

Thereafter, you can read a device, and write to it. If you know you only have
1 sensor attached, or if you want to address all sensors, you can start with a
"Skip Rom" - command. This means; take no notice about the Ids of the
sensors - skip that part of the communication.

When you made a 1w-reset, all devices of the bus are listening. If you chose
to address only one of them, the rest of them will not listen again before you
have made a new 1w-reset on the bus.

I do not describe BASCOM commands in this text - they are pretty much self-
explaining. But the uC has to write the commands to the bus - and thereafter
read the answer. What you have to write as a command depends on devices
you are using - and what you want to do with it. Every DS chip has a
datasheet, which you can find at
http://www.dalsemi.com/datasheets/pdfindex.html. There you can find out all
about the actual devices command structure.

There are some things to have in mind when deciding which of the bus-
types to use.

Ver. 1.11.6.3 BASCOM-AVR Page 92 of 420

The commands, from BASCOM, are the same in both cases. So this is not a
problem.

The +5V power-supply on the VDD when using a 2wire-bus has to be from
separate power supply, according to DS. But it still works with taking the
power from the same source as for the processor, directly on the stabilizing
transistor. I have not got it to work taking power directly from the processor
pin.

Some devices consume some more power during special operations. The
DS1820 consumes a lot of power during the operation "Convert
Temperature". Because the sensors knows how they are powered (it is also
possible to get this information from the devices) some operations, as
"Convert T" takes different amount of time for the sensor to execute. The
command "Convert T" as example, takes ~200mS on 2wire, but ~700mS on
1wire. This has to be considered during programming.

And that power also has to be supplied somehow.

If you use 2wire, you don't have to read further in this part. You can do
simultaneously "Convert T" on all the devices you attach on the bus. And save
time. This command is the most power-consuming command, possible to
execute on several devices, I am aware of.

If you use 1wire, there are things to think about. It is about not consuming
more power than you feed. And how to feed power? That depends on the
devices (their consumption) and what you are doing with them (their
consumption in a specific operation).

Short, not-so-accurate description of power needs, not reflecting on cable
lengths

Only the processor pin as power supplier, will work < 5 sensors. (AVR, 1w-
functions use an internal pull-up. 8051 not yet tested). Don't even think of
simultaneously commands on multiple sensors.

With +5V through a 4K7 resistor, to the DQ-line, 70 sensors are tested. But,
take care, cause issuing "Convert T" simultaneously, would cause that to give
false readings. About ~15 sensors is the maximum amount of usable devices,
which simultaneously performs some action. This approach DS refers to as
"pull-up resistor".
With this in mind, bus up to 70 devices has been successfully powered this
way.

The resistor mentioned, 4K7, could be of smaller value. DS says minimum
1K5, I have tested down to 500 ohm - below that the bus is not usable any

Ver. 1.11.6.3 BASCOM-AVR Page 93 of 420

more. (AVR). Lowering the resistor feeds more power - and makes the bus
more noise -resistant. But, the resistor minimum value is naturally also
depending on the uC-pin electric capabilities. Stay at 4K7 - which is standard
recommendation.

DS recommends yet another approach, called "strong pull-up" which (short)
works via a MOS-FET transistor, feeding the DQ lines with enough power, still
on 1wire, during power-consuming tasks. This is not tested, but should
naturally work. Cause this functionality is really a limited one; BASCOM has
no special support for that. But anyway, we tell you about it, just in case you
wonder. Strong pull-up has to use one uC pin extra - to drive the MOS-FET.

Cable lengths (this section is only for some limitation understanding)

For short runs up to 30 meters, cable selection for use on the 1W bus is less
critical. Even flat modular phone cable works with limited numbers of 1-Wire
devices. However, the longer the 1W bus, the more pronounced cable effects
become, and therefore the greater importance placed on cable selection.

For longer distances, DS recommends twisted-pair-cable (CAT5).

DS standard examples show 100 meters cable lengths, so they say, that's no
problem. They also show examples with 300m cabling, and I think I have seen
something with 600-meter bus (but I cant find it again).

Noise and CRC

The longer cable and the noisier environment, the more false readings will be
made. The devices are equipped with a CRC-generator - the LSByte of the
sending is always a checksum. Look in program examples to learn how to re-
calculate this checksum in your uC. AND, if you notice that there are false
readings - do something about your cables. (Shield, lower resistor)

Transfer speed

On the original 1w-bus, DS says the transfer speed is about 14Kbits /second.
And, if that was not enough, some devices has an overdrive option. That
multiplies the speed by 10. This is issued by making the communication-time-
slots smaller (from 60 uS to 6uS) which naturally will make the devices more
sensitive, and CRC-error will probably occur more often. But, if that is not an
issue, ~140Kbit is a reachable speed to the devices. So, whatever you
thought before, it is FAST.

The BASCOM scanning of the bus is finds about 50 devices / second , and
reading a specific sensors value to a uC should be about 13 devices / second.

Ver. 1.11.6.3 BASCOM-AVR Page 94 of 420

Topology

Of the 1w-net - that is an issue we will not cover so much. Star-net, bus-net?
It seems like you can mix that. It is a bus-net, but not so sensitive about that.

The benefit of the 1w-bus

Each device is individual - and you can communicate with it over the media of
2 wires. Still, you can address one individual device, if you like. Get its value.
There are 64 ^ 2 unique identifications-numbers.
Naturally, if lot of cables are unwanted, this is a big benefit. And you only
occupy 1 processor pin.

DS supplies with different types of devices, which all are made for interfacing
an uC - directly. No extra hardware. There are sensors, so you can get
knowledge about the real world, and there are also potentiometers and relays,
so you can do something about it. On the very same bus.

And the Ibutton approach from DS (ever heard of it?) is based on 1wire
technology. Maybe something to pick up.

BASCOM let you use an uC with 1wire-devices so easy, that (since now) that
also has to count as a benefit - maybe one of the largest. ;-)

The disadvantages of the 1w-bus

So far as I know, DS is the only manufacturer of sensors for the bus. Some
people think their devices are expensive. And, until now, it was really difficult
to communicate with the devices. Particularly when using the benefit of
several devices on one bus. Still some people say that the 1w-bus is slow -
but I don't think so.

Göte Haluza
System engineer

Using the SPI protocol
The Serial Peripheral Interface (SPI) allows high-speed synchronous data
transfer between the micro processor and peripheral devices or between
several micro processors devices.

The interconnection between master and slave CPUs with SPI is shown in

Ver. 1.11.6.3 BASCOM-AVR Page 95 of 420

Figure 2. The PB5(SCK) pin is the clock output in the master mode and is
the clock input in the slave mode. Writing to the SPI data register of the
master CPU starts the SPI clock generator, and the data written shifts out
of the PB3(MOSI) pin and into the PB3(MOSI) pin of the slave CPU. After
shifting one byte, the SPI clock generator
stops, setting the end of transmission flag (SPIF). If the SPI interrupt enable
bit (SPIE) in the SPCR register is set, an interrupt is requested. The Slave
Select input,
PB2(SS), is set low to select an individual SPI device as a slave. The two
shift registers in the Master and the Slave can be considered as one
distributed 16-bit circular shift register. This is shown in Figure 2. When
data is shifted from the master to the slave, data is also shifted in the
opposite direction, simultaneously. This means that during one shift cycle,
data in the master and the slave are inter-changed.

Figure 2

The system is single buffered in the transmit direction and double buffered
in the receive direction. This means that characters to be transmitted
cannot be written to the SPI Data Register before the entire shift cycle is
completed.
When receiving data, however, a received character must be read from the
SPI Data Register before the next character has been completely shifted in.
Otherwise, the first character is lost.
When the SPI is enabled, the data direction of the MOSI, MISO, SCK and
SS pins is overridden according to the fol-lowing table:

Pin Direction Overrides Master SPI Mode Direction

Overrides
Slave SPI Modes

MOSI User Defined Input

Ver. 1.11.6.3 BASCOM-AVR Page 96 of 420

MISO Input User Defined
SCK User Defined Input
SS User Defined Input

SS Pin Functionality
When the SPI is configured as a master (MSTR in SPCR is set), the user
can determine the direction of the SS pin. If SS is configured as an output,
the pin is a general output pin which does not affect the SPI system. If SS is
configured
as an input, it must be hold high to ensure Master SPI operation. If, in
master mode, the SS pin is input, and is driven low by peripheral circuitry,
the SPI system interprets
this as another master selecting the SPI as a slave and starting to send
data to it. To avoid bus contention, the SPI system takes the following
actions:
1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave.
As a result of the SPI becoming a slave, the MOSI and SCK pins become
inputs.
2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, the
interrupt routine will be executed.
Thus, when interrupt-driven SPI transmittal is used in master mode, and
there exists a possibility that SS is driven low, the interrupt should always
check that the MSTR bit is
still set. Once the MSTR bit has been cleared by a slave select, the user
must set it.
When the SPI is configured as a slave, the SS pin is always input. When
SS is held low, the SPI is activated and MISO becomes an output if
configured so by the user. All other pins are inputs. When SS is driven high,
externally all pins are inputs, and the SPI is passive, which means that it
will not receive incoming data.

Data Modes
There are four combinations of SCK phase and polarity with respect to
serial data, which are determined by control bits CPHA and CPOL. The SPI
data transfer formats are shown in Figure 3 and Figure 4.

Figure 3

Ver. 1.11.6.3 BASCOM-AVR Page 97 of 420

Figure 4

When you set the SPI option from the Options, Compiler, SPI menu SPCR will
be set to 01010100 which means ; enable SPI, master mode, CPOL = 1
When you want to control the various options with the hardware SPI you can
use the CONFIG SPI statement.

Power Up
At power up all ports are in Tri-state and can serve as input pins.
When you want to use the ports (pins) as output, you must set the data
direction first with the statement : CONFIG PORTB = OUTPUT

Individual bits can also be set to be uses as input or output.

Ver. 1.11.6.3 BASCOM-AVR Page 98 of 420

For example : DDRB = &B00001111 , will set a value of 15 to the data
direction register of PORTB.
PORTB.0 to PORTB.3 (the lower 5 bits) can be used as outputs because
they are set low. The upper four bits (PORTB.4 to PORTB.7), can be used for
input because they are set low.

You can also set the direction of a port pin with the statement :
CONFIG PINB.0 = OUTPUT | INPUT

The internal RAM is cleared at power up or when a reset occurs. Use
$NORAMCLEAR to disable this future.

Language Fundamentals
Characters from the BASCOM character set are put together to form labels,
keywords, variables and operators.
These in turn are combined to form the statements that make up a program.

This chapter describes the character set and the format of BASCOM
program lines. In particular, it discusses:

• The specific characters in the character set and the special meanings of

some characters.
• The format of a line in a BASCOM program.
• Line labels.
• Program line length.

Character Set
The BASCOM BASIC character set consists of alphabetic characters,
numeric characters, and special characters.

The alphabetic characters in BASCOM are the uppercase letters (A-Z) and
lowercase letters (az) of the alphabet.

Ver. 1.11.6.3 BASCOM-AVR Page 99 of 420

The BASCOM numeric characters are the digits 0-9.
The letters A-H can be used as parts of hexadecimal numbers.
The following characters have special meanings in BASCOM statements and
expressions:

Character Name
ENTER Terminates input of a line
 Blank (or space)
' Single quotation mark (apostrophe)
* Asterisks (multiplication symbol)
+ Plus sign
, Comma
- Minus sign
. Period (decimal point)
/ Slash (division symbol) will be handled as \
: Colon
" Double quotation mark
; Semicolon
< Less than
= Equal sign (assignment symbol or relational operator)
> Greater than
\ Backslash (integer/word division symbol)
^ Exponent

The BASCOM program line

BASCOM program lines have the following syntax:

[[line-identifier]] [[statement]] [[:statement]] ... [[comment]]

Using Line Identifiers

Ver. 1.11.6.3 BASCOM-AVR Page 100 of 420

BASCOM support one type of line-identifier; alphanumeric line labels:

An alphabetic line label may be any combination of from 1 to 32 letters and
digits, starting with a letter and ending with a colon.
BASCOM keywords are not permitted.
The following are valid alphanumeric line labels:

Alpha:
ScreenSUB:
Test3A:

Case is not significant. The following line labels are equivalent:

alpha:
Alpha:
ALPHA:

Line labels may begin in any column, as long as they are the first characters
other than blanks on the line.
Blanks are not allowed between an alphabetic label and the colon following
it.
A line can have only one label.

BASCOM Statements
A BASCOM statement is either "executable" or " non-executable".
An executable statement advances the flow of a programs logic by telling the
program what to do next.
Non executable statement perform tasks such as allocating storage for
variables, declaring and defining variable types.

The following BASCOM statements are examples of non-executable
statements:

Ver. 1.11.6.3 BASCOM-AVR Page 101 of 420

• REM or (starts a comment)

• DIM

A "comment" is a non-executable statement used to clarify a programs
operation and purpose.
A comment is introduced by the REM statement or a single quote
character(').
The following lines are equivalent:

PRINT " Quantity remaining" : REM Print report label.
PRINT " Quantity remaining" ' Print report label.

More than one BASCOM statement can be placed on a line, but colons(:)
must separate statements, as illustrated below.

FOR I = 1 TO 5 : PRINT " Gday, mate." : NEXT I

BASCOM LineLength

If you enter your programs using the built-in editor, you are not limited to any
line length, although it is advised to shorten your lines to 80 characters for
clarity.

Data Types
Every variable in BASCOM has a data type that determines what can be
stored in the variable. The next section summarizes the elementary data
types.

Elementary Data Types
• Bit (1/8 byte). A bit can hold only the value 0 or 1.
 A group of 8 bits is called a byte.
 • Byte (1 byte).

Bytes are stores as unsigned 8-bit binary numbers ranging in value from
0 to 255.

Ver. 1.11.6.3 BASCOM-AVR Page 102 of 420

• Integer (two bytes).
Integers are stored as signed sixteen-bit binary numbers ranging in value
from -32,768 to +32,767.

• Word (two bytes).
Words are stored as unsigned sixteen-bit binary numbers ranging in value
from 0 to 65535.

• Long (four bytes).
Longs are stored as signed 32-bit binary numbers ranging in value from
-2147483648 to 2147483647.

• Single.
Singles are stored as signed 32 bit binary numbers.

• String (up to 254 bytes).
Strings are stored as bytes and are terminated with a 0-byte.
A string dimensioned with a length of 10 bytes will occupy 11 bytes.

Variables can be stored internal (default) , external or in EEPROM.

Variables
A variable is a name that refers to an object--a particular number.

A numeric variable, can be assigned only a numeric value (either integer,
byte, long, single or bit).
The following list shows some examples of variable assignments:

• A constant value:

A = 5
C = 1.1

• The value of another numeric variable:

abc = def
k = g

• The value obtained by combining other variables, constants, and

operators: Temp = a + 5
Temp = C + 5

• The value obtained by calling a function:

Ver. 1.11.6.3 BASCOM-AVR Page 103 of 420

 Temp = Asc(S)

Variable Names
A BASCOM variable name may contain up to 32 characters.
The characters allowed in a variable name are letters and numbers.
The first character in a variable name must be a letter.

A variable name cannot be a reserved word, but embedded reserved words
are allowed.
For example, the following statement is illegal because AND is a reserved
word.

AND = 8

However, the following statement is legal:

ToAND = 8

Reserved words include all BASCOM commands, statements, function
names, internal registers and operator names.
(see BASCOM Reserved Words , for a complete list of reserved words).

You can specify a hexadecimal or binary number with the prefix &H or &B.
a = &HA , a = &B1010 and a = 10 are all the same.

Before assigning a variable, you must tell the compiler about it with the DIM
statement.

Dim b1 As Bit, I as Integer, k as Byte , s As String * 10

The STRING type needs an additional parameter to specify the length.

Ver. 1.11.6.3 BASCOM-AVR Page 104 of 420

You can also use DEFINT, DEFBIT, DEFBYTE ,DEFWORD ,DEFLNG or
DEFSNG.
For example DEFINT c tells the compiler that all variables that are not
dimensioned and that are beginning with the character c are of the Integer
type.

Expressions and Operators
This chapter discusses how to combine, modify, compare, or get information
about expressions by using the operators available in BASCOM.

Anytime you do a calculation you are using expressions and operators.
This chapter describes how expressions are formed and concludes by
describing the following kind of operators:

• Arithmetic operators, used to perform calculations.

• Relational operators, used to compare numeric or string values.

• Logical operators, used to test conditions or manipulate individual bits.

• Functional operators, used to supplement simple operators.

Expressions and Operators
An expression can be a numeric constant, a variable, or a single value
obtained by combining constants, variables, and other expressions with
operators.

Operators perform mathematical or logical operations on values.
The operators provided by BASCOM can be divided into four categories, as
follows:

1. Arithmetic
2. Relational
3. Logical

Ver. 1.11.6.3 BASCOM-AVR Page 105 of 420

4. Functional

Arithmetic
Arithmetic operators are +, - , * , \, / and ^.

• Integer
 Integer division is denoted by the backslash (\).
 Example: Z = X \ Y

• Modulo Arithmetic
 Modulo arithmetic is denoted by the modulus operator MOD.
 Modulo arithmetic provides the remainder, rather than the quotient, of
 an integer division.
 Example: X = 10 \ 4 : remainder = 10 MOD 4

• Overflow and division by zero
Division by zero, produces an error.
At the moment no message is produced, so you have to make sure
yourself that this won't happen.

Relational Operators
Relational operators are used to compare two values as shown in the table
below.
The result can be used to make a decision regarding program flow.

Operator Relation Tested Expression
= Equality X = Y
<> Inequality X <> Y
< Less than X < Y
> Greater than X > Y
<= Less than or equal to X <= Y
>= Greater than or equal to X >= Y

Ver. 1.11.6.3 BASCOM-AVR Page 106 of 420

Logical Operators
Logical operators perform tests on relations, bit manipulations, or Boolean
operators.
There four operators in BASCOM are :

Operator Meaning
NOT Logical complement
AND Conjunction
OR Disjunction
XOR Exclusive or

It is possible to use logical operators to test bytes for a particular bit pattern.
For example the AND operator can be used to mask all but one of the bits
of a status byte, while OR can be used to merge two bytes to create a
particular binary value.

Example
A = 63 And 19
PRINT A
A = 10 Or 9
PRINT A

Output
19
11

Floating point (ASM code used is supplied by Jack Tidwell)

Single numbers conforming to the IEEE binary floating point standard.
An eight bit exponent and 24 bit mantissa are supported.
Using four bytes the format is shown below:

Ver. 1.11.6.3 BASCOM-AVR Page 107 of 420

31 30________23 22______________________________0
s exponent mantissa

The exponent is biased by 128. Above 128 are positive exponents and
below are negative. The sign bit is 0 for positive numbers and 1 for
negative. The mantissa is stored in hidden bit normalized format so
that 24 bits of precision can be obtained.

All mathematical operations are supported by the single.
You can also convert a single to an integer or word or vise versa:
Dim I as Integer, S as Single
S = 100.1 'assign the single
I = S 'will convert the single to an integer

Here is a fragment from the Microsoft knowledge base about FP:

Floating-point mathematics is a complex topic that confuses many
programmers. The tutorial below should help you recognize programming
situations where floating-point errors are likely to occur and how to avoid
them. It should also allow you to recognize cases that are caused by inherent
floating-point math limitations as opposed to
actual compiler bugs.

Decimal and Binary Number Systems
Normally, we count things in base 10. The base is completely
arbitrary. The only reason that people have traditionally used base
10 is that they have 10 fingers, which have made handy counting
tools.

The number 532.25 in decimal (base 10) means the following:

 (5 * 10^2) + (3 * 10^1) + (2 * 10^0) + (2 * 10^-1) + (5 * 10^-2)

Ver. 1.11.6.3 BASCOM-AVR Page 108 of 420

 500 + 30 + 2 + 2/10 + 5/100

 = 532.25

In the binary number system (base 2), each column represents a power
of 2 instead of 10. For example, the number 101.01 means the following:

 (1 * 2^2) + (0 * 2^1) + (1 * 2^0) + (0 * 2^-1) + (1 * 2^-2)
 4 + 0 + 1 + 0 + 1/4

 = 5.25 Decimal

How Integers Are Represented in PCs

Because there is no fractional part to an integer, its machine
representation is much simpler than it is for floating-point values. Normal
integers on personal computers (PCs) are 2 bytes (16 bits) long with the
most significant bit indicating the sign. Long integers are 4 bytes long.
Positive values are straightforward binary numbers. For example:

 1 Decimal = 1 Binary

 2 Decimal = 10 Binary
 22 Decimal = 10110 Binary, etc.

However, negative integers are represented using the two's complement
scheme. To get the two's complement representation for a negative
number, take the binary representation for the number's absolute value
and then flip all the bits and add 1. For example:

 4 Decimal = 0000 0000 0000 0100
 1111 1111 1111 1011 Flip the Bits

Ver. 1.11.6.3 BASCOM-AVR Page 109 of 420

 -4 = 1111 1111 1111 1100 Add 1

Note that adding any combination of two's complement numbers together
using ordinary binary arithmetic produces the correct result.

Floating-Point Complications
Every decimal integer can be exactly represented by a binary integer;
however, this is not true for fractional numbers. In fact, every number that is
irrational in base 10 will also be irrational in any system with a base smaller
than 10.

For binary, in particular, only fractional numbers that can be represented in
the form p/q, where q is an integer power of 2, can be expressed exactly,
with a finite number of bits.

Even common decimal fractions, such as decimal 0.0001, cannot be
represented exactly in binary. (0.0001 is a repeating binary fraction
with a period of 104 bits!)

This explains why a simple example, such as the following

 SUM = 0
 FOR I% = 1 TO 10000
 SUM = SUM + 0.0001
 NEXT I%
 PRINT SUM ' Theoretically = 1.0.

will PRINT 1.000054 as output. The small error in representing 0.0001
in binary propagates to the sum.

For the same reason, you should always be very cautious when making
comparisons on real numbers. The following example illustrates a
common programming error:

Ver. 1.11.6.3 BASCOM-AVR Page 110 of 420

 item1# = 69.82#
 item2# = 69.20# + 0.62#
 IF item1# = item2# then print "Equality!"

This will NOT PRINT "Equality!" because 69.82 cannot be represented
exactly in binary, which causes the value that results from the assignment to
be SLIGHTLY different (in binary) than the value that is generated from the
expression. In practice, you should always code such comparisons in such a
way as to allow for some tolerance.

General Floating-Point Concepts

It is very important to realize that any binary floating-point system can
represent only a finite number of floating-point values in exact form. All other
values must be approximated by the closest representable value. The IEEE
standard specifies the method for rounding values to the "closest"
representable value. BASCOM supports the standard and rounds according
to the IEEE rules.

Also, keep in mind that the numbers that can be represented in IEEE are
spread out over a very wide range. You can imagine them on a number line.
There is a high density of representable numbers near 1.0 and -1.0 but fewer
and fewer as you go towards 0 or infinity.

The goal of the IEEE standard, which is designed for engineering
calculations, is to maximize accuracy (to get as close as possible to the
actual number). Precision refers to the number of digits that you can
represent. The IEEE standard attempts to balance the number of bits
dedicated to the exponent with the number of bits used for the fractional part
of the number, to keep both accuracy and precision within acceptable limits.

IEEE Details
Floating-point numbers are represented in the following form, where
[exponent] is the binary exponent:

Ver. 1.11.6.3 BASCOM-AVR Page 111 of 420

 X = Fraction * 2^(exponent - bias)

[Fraction] is the normalized fractional part of the number, normalized
because the exponent is adjusted so that the leading bit is always a 1. This
way, it does not have to be stored, and you get one more bit of precision.
This is why there is an implied bit. You can think of this like scientific
notation, where you manipulate the exponent to have one digit to the left of
the decimal point, except in binary, you can always manipulate the exponent
so that the first bit is a 1, since there are only 1s and 0s.

[bias] is the bias value used to avoid having to store negative exponents.

The bias for single-precision numbers is 127 and 1023 (decimal) for double-
precision numbers.

The values equal to all 0's and all 1's (binary) are reserved for representing
special cases. There are other special cases as well, that indicate various
error conditions.

Single-Precision Examples

 2 = 1 * 2^1 = 0100 0000 0000 0000 ... 0000 0000 = 4000 0000 hex
 Note the sign bit is zero, and the stored exponent is 128, or

 100 0000 0 in binary, which is 127 plus 1. The stored mantissa is
 (1.) 000 0000 ... 0000 0000, which has an implied leading 1 and
 binary point, so the actual mantissa is 1.

-2 = -1 * 2^1 = 1100 0000 0000 0000 ... 0000 0000 = C000 0000 hex
 Same as +2 except that the sign bit is set. This is true for all
 IEEE format floating-point numbers.

 4 = 1 * 2^2 = 0100 0000 1000 0000 ... 0000 0000 = 4080 0000 hex
 Same mantissa, exponent increases by one (biased value is 129, or
 100 0000 1 in binary.

Ver. 1.11.6.3 BASCOM-AVR Page 112 of 420

 6 = 1.5 * 2^2 = 0100 0000 1100 0000 ... 0000 0000 = 40C0 0000 hex

 Same exponent, mantissa is larger by half -- it's
 (1.) 100 0000 ... 0000 0000, which, since this is a binary
 fraction, is 1-1/2 (the values of the fractional digits are 1/2,
 1/4, 1/8, etc.).

 1 = 1 * 2^0 = 0011 1111 1000 0000 ... 0000 0000 = 3F80 0000 hex
 Same exponent as other powers of 2, mantissa is one less than
 2 at 127, or 011 1111 1 in binary.

.75 = 1.5 * 2^-1 = 0011 1111 0100 0000 ... 0000 0000 = 3F40 0000 hex
 The biased exponent is 126, 011 1111 0 in binary, and the mantissa

 is (1.) 100 0000 ... 0000 0000, which is 1-1/2.

2.5 = 1.25 * 2^1 = 0100 0000 0010 0000 ... 0000 0000 = 4020 0000 hex
 Exactly the same as 2 except that the bit which represents 1/4 is
 set in the mantissa.

0.1 = 1.6 * 2^-4 = 0011 1101 1100 1100 ... 1100 1101 = 3DCC CCCD hex
1/10 is a repeating fraction in binary. The mantissa is just shy of 1.6, and the
biased exponent says that 1.6 is to be divided by 16 (it is 011 1101 1 in
binary, which is 123 n decimal). The true exponent is 123 - 127 = -4, which
means that the factor by which to multiply is 2**-4 = 1/16. Note that the
stored mantissa is rounded up in the last bit. This is an attempt to represent
the unrepresentable number as accurately as possible. (The reason that 1/10
and 1/100 are not exactly representable in binary is similar to the way that
1/3 is not exactly representable in decimal.)

0 = 1.0 * 2^-128 = all zeros -- a special case.

Other Common Floating-Point Errors
The following are common floating-point errors:

Ver. 1.11.6.3 BASCOM-AVR Page 113 of 420

1. Round-off error
 This error results when all of the bits in a binary number cannot
 be used in a calculation.

 Example: Adding 0.0001 to 0.9900 (Single Precision)

 Decimal 0.0001 will be represented as:

 (1.)10100011011011100010111 * 2^(-14+Bias) (13 Leading 0s in
 Binary!)

 0.9900 will be represented as:

 (1.)11111010111000010100011 * 2^(-1+Bias)

Now to actually add these numbers, the decimal (binary) points must be
aligned. For this they must be Unnormalized. Here is the resulting addition:

 .000000000000011010001101 * 2^0 <- Only 11 of 23 Bits retained
 +.111111010111000010100011 * 2^0

 .111111010111011100110000 * 2^0

This is called a round-off error because some computers round when shifting
for addition. Others simply truncate. Round-off errors are important to
consider whenever you are adding or multiplying two very different values.

2. Subtracting two almost equal values

 .1235
 -.1234

Ver. 1.11.6.3 BASCOM-AVR Page 114 of 420

 .0001

This will be normalized. Note that although the original numbers each had
four significant digits, the result has only one significant digit.

3. Overflow and underflow
This occurs when the result is too large or too small to be represented by the
data type.

4. Quantizing error
This occurs with those numbers that cannot be represented in exact form by
the floating-point standard.

Arrays
An array is a set of sequentially indexed elements having the same type.
Each element of an array has a unique index number that identifies it.
Changes made to an element of an array do not affect the other elements.

The index must be a numeric constant, a byte, an integer , word or long.
The maximum number of elements is 65535.

The first element of an array is always one. This means that elements are 1-
based.

Arrays can be used on each place where a 'normal' variable is expected.

Example:
'create an array named a, with 10 elements (1 to 10)
Dim A(10) As Byte
'create an integer
Dim C As Integer
'now fill the array
For C = 1 To 10
 'assign array element
 A(c) = C
 ' print it
 Print A(c)

Ver. 1.11.6.3 BASCOM-AVR Page 115 of 420

Next
'you can add an offset to the index too
C = 0
A(c + 1) = 100
Print A(c + 1)
End

Strings
A string is used to store text. A string must be dimensioned with the length
specified.
DIM S as STRING * 5
Will create a string that can store a text with a maximum length of 5 bytes.
The space used is 6 bytes because a string is terminated with a null byte.
To assign the string:
s = "abcd"
To insert special characters into the string :
s= "AB{027}cd"
The {ascii} will insert the ASCII value into the string.
The number of digits must be 3. s = "{27} will assign "{27}" to the string
instead of escape character 27!

Casting
In BASCOM-AVR when you perform operations on variables they all must be
of the same data type.
long = long1 * long2 ' for example
The assigned variables data type determines what kind of math is performed.
For example when you assign a long, long math will be used.
If you try to store the result of a LONG into a byte, only the LSB of the LONG
will be stored into the BYTE.
Byte = LONG
When LONG = 256 , it will not fit into a BYTE. The result will be 256 AND
255 = 0.
Of course you are free to use different data types. The correct result is only
guaranteed when you are using data types of the same kind or that that
result always can fit into the target data type.

Ver. 1.11.6.3 BASCOM-AVR Page 116 of 420

When you use strings, the same rules apply. But there is one exception:
Dim b as Byte
b = 123 ' ok this is normal
b = "A" ' b = 65
When the target is a byte and the source variable is a string constant
denoted by "", the ASCII value will be stored in the byte. This works also for
tests :
IF b = "A" then ' when b = 65
END IF
This is different compared to QB/VB where you can not assign a string to a
byte variable.

SINGLE CONVERSION
When you want to convert a SINGLE into a byte, word, integer or long the
compiler will automatic convert the values when the source string is of the
SINGLE data type.
integer = single
You can also convert a byte, word, integer or long into a SINGLE by
assigning this variable to a SINGLE.
single = long

Reserved Words
The following table shows the reserved BASCOM statements or characters.

^

!

;

$BAUD

$CRYSTAL

$DATA

$DEFAULT

$END

$EEPROM

$EXTERNAL

Ver. 1.11.6.3 BASCOM-AVR Page 117 of 420

$INCLUDE

$LCD

$LCDRS

$LCDPUTCTRL

$LCDPUTDATA

$LIB

$REGFILE

$SERIALINPUT

$SERIALINPUT2LCD

$SERIALOUTPUT

$WAITSTATE

$XRAMSIZE

$XRAMSTART

1WRESET

1WREAD

1WWRITE

ACK

ABS()

ALIAS

AND

AS

ASC()

AT

BAUD

BCD()

BIT

BITWAIT

BLINK

BOOLEAN

BYTE

BYVAL

CALL

CAPTURE1

Ver. 1.11.6.3 BASCOM-AVR Page 118 of 420

CASE

CHR()

CLS

CLOSE

COMPARE1A

COMPARE1B

CONFIG

CONST

COUNTER

COUNTER0

COUNTER1

COUNTER2

CPEEK()

CPEEKH()

CRYSTAL

CURSOR

DATA

DATE$

DEBOUNCE

DECR

DECLARE

DEFBIT

DEFBYTE

DEFLNG

DEFWORD

DEGSNG

DEFLCDCHAR

DEFINT

DEFWORD

DELAY

DIM

DISABLE

DISPLAY

DO

DOWNTO

Ver. 1.11.6.3 BASCOM-AVR Page 119 of 420

ELSE

ELSEIF

ENABLE

END

ERAM

ERASE

ERR

EXIT

EXTERNAL

FOR

FOURTH

FOURTHLINE

FUNCTION

GATE

GETAD()

GETRC5()

GOSUB

GOTO

HEXVAL()

HIGH()

HOME

I2CRECEIVE

I2CSEND

I2CSTART

I2CSTOP

I2CRBYTE

I2CWBYTE

IDLE

IF

INCR

INKEY

INP()

INPUT

Ver. 1.11.6.3 BASCOM-AVR Page 120 of 420

INPUTBIN

INPUTHEX

INT0

INT1

INTEGER

INTERNAL

INSTR

IS

LCASE()

LCD

LEFT

LEFT()

LEN()

LOAD

LOCAL

LOCATE

LONG

LOOKUP()

LOOKUPSTR()

LOOP

LTRIM()

LOW()

LOWER

LOWERLINE

MAKEBCD()

MAKEDEC()

MAKEINT()

MID()

MOD

MODE

NACK

NEXT

NOBLINK

NOSAVE

Ver. 1.11.6.3 BASCOM-AVR Page 121 of 420

NOT

OFF

ON

OR

OUT

OUTPUT

PEEK()

POKE

PORTA

PORTB

PORTC

PORTD

PORTE

PORTF

POWERDOWN

PRINT

PRINTBIN

PULSEOUT

PWM1A

PWM1B

READ

READEEPROM

REM

RESET

RESTORE

RETURN

RIGHT

RIGHT()

ROTATE

RTRIM()

SELECT

SERIAL

SET

Ver. 1.11.6.3 BASCOM-AVR Page 122 of 420

SHIFT

SHIFTLCD

SHIFTCURSOR

SHIFTIN

SHIFTOUT

SOUND

SPACE()

SPIINIT

SPIIN

SPIMOVE

SPIOUT

START

STEP

STR()

STRING()

STOP

STOP TIMER

SUB

SWAP

THEN

TIME$

THIRD

THIRDLINE

TIMER0

TIMER1

TIMER2

TO

TRIM()

UCASE()

UNTIL

UPPER

UPPERLINE

VAL()

VARPTR()

Ver. 1.11.6.3 BASCOM-AVR Page 123 of 420

WAIT

WAITKEY()

WAITMS

WAITUS

WATCHDOG

WRITEEEPROM

WEND

WHILE

WORD

XOR

XRAM

#IF ELSE ENDIF
Action
Conditional compilation directives intended for conditional compilation.

Syntax
#IF condition
#ELSE
#ENDIF

Remarks
Conditional compilation is supported by the compiler.
What is conditional compilation?
Conditional compilation will only compile parts of your code that meet the
criteria of the condition.

By default all your code is compiled.
Conditional compilation needs a constant to test.
So before a condition can be set up you need to define a constant.

CONST test = 1

Ver. 1.11.6.3 BASCOM-AVR Page 124 of 420

#IF TEST
Print "This will be compiled"
#ELSE
Print "And this not"
#ENDIF

Note that there is no THEN and that #ENDIF is not #END IF (no space)

You can nest the conditions and the use of #ELSE is optional.

There are a few internal constants that you can use. These are generated
by the compiler:

_CHIP = 0
_RAMSIZE = 128
_ERAMSIZE = 128
_SIM = 0
_XTAL = 4000000
_BUILD = 11162

_CHIP is an integer that specifies the chip, in this case the 2313
_RAMSIZE is the size of the SRAM
_ERAMSIZE is the size of the EEPROM
_SIM is set to 1 when the $SIM directive is used
_XTAL contains the value of the specified crystal
_BUILD is the build number of the compiler.

The build number can be used to write support for statements that are not
available in a certain version :
#IF _BUILD >= 11162
 s = Log(1.1)
#ELSE
 Print "Sorry, implemented in 1.11.6.2"
#ENDIF

Ver. 1.11.6.3 BASCOM-AVR Page 125 of 420

$ASM
Action
Start of inline assembly code block.

Syntax
$ASM

Remarks
Use $ASM together with $END ASM to insert a block of assembler code in
your BASIC code. You can also precede each line with the ! sign.
Most ASM mnemonics can be used without the preceding ! too.

See also the chapter Mixing BASIC and Assembly and assembler mnemonics

Example
Dim C As Byte

Loadadr C , X 'load address of variable C into register X

$asm
 Ldi R24,1 'load register R24 with the constant 1
 St X,R24 ;store 1 into variable c
$end Asm
Print C
End

$BAUD
Action
Instruct the compiler to override the baud rate setting from the options menu.

Syntax

Ver. 1.11.6.3 BASCOM-AVR Page 126 of 420

$BAUD = var

Remarks
Var The baud rate that you want to use.

var : Constant.

The baud rate is selectable from the Compiler Settings. It is stored in a
configuration file. The $BAUD statement is provided for compatibility with
BASCOM-8051.

In the generated report, you can view which baud rate is actually generated.
When you simulate a program you will not notice any problems when the
baud rate is not set to the value you expected. In real hardware a wrong baud
rate can give weird results on the terminal emulator screen. For best results
use a XTAL that is a multiple of the baud rate.

See also
$CRYSTAL , BAUD

Example
$baud = 2400
$crystal = 14000000 ' 14 MHz crystal
Print "Hello"
'Now change the baud rate in a program
Baud = 9600 '
Print "Did you change the terminal emulator baud rate too?"
End

$BGF

Action

Includes a BASCOM Graphic File.

Ver. 1.11.6.3 BASCOM-AVR Page 127 of 420

Syntax

$BGF "file"

Remarks
file The file name of the BGF file to include.

Use SHOWPIC to display the BGF file.

See also
SHOWPIC , PSET , CONFIG GRAPHLCD

Example

Dim X as Byte, Y as Byte
For X = 0 To 10
 For Y = 0 To 10
 Pset X , Y , 1 'make a nice block
 Next
Next

End

$CRYSTAL

Action
Instruct the compiler to override the crystal frequency options setting.

Ver. 1.11.6.3 BASCOM-AVR Page 128 of 420

Syntax
$CRYSTAL = var

Remarks
var Frequency of the crystal.
var : Constant.

The frequency is selectable from the Compiler Settings. It is stored in a
configuration file. The $CRYSTAL statement is provided for compatibility with
BASCOM-8051.

See also
$BAUD , BAUD

Example
$baud = 2400
$crystal = 4000000
Print "Hello"
End

$DATA

Action
Instruct the compiler to store the data in the DATA lines following the $DATA
directive, in code memory.

Syntax
$DATA

Ver. 1.11.6.3 BASCOM-AVR Page 129 of 420

Remarks
The AVR has built-in EEPROM. With the WRITEEEPROM and
READEEPROM statements, you can write and read to the EEPROM.
To store information in the EEPROM, you can add DATA lines to your
program that hold the data that must be stored in the EEPROM.
A separate file is generated with the EEP extension. This file can be used to
program the EEPROM.

The compiler must know which DATA must go into the code memory or the
EEP file and therefore two compiler directives were added.
$EEPROM and $DATA.

$EEPROM tells the compiler that the DATA lines following the compiler
directive, must be stored in the EEP file.
To switch back to the default behavior of the DATA lines, you must use the
$DATA directive.

The READ statement that is used to read the DATA info may only be used
with normal DATA lines. It does not work with DATA stored in EEPROM.

See also
$EEPROM , READEEPROM , WRITEEEPROM

ASM
NONE

Example
'---
' READDATA.BAS
' Copyright 1999-2000 MCS Electronics
'---

Dim A As Integer , B1 As Byte , Count As Byte
Dim S As String * 15
Dim L As Long
Restore Dta1 'point to stored data
For Count = 1 To 3 'for number of data items
 Read B1 : Print Count ; " " ; B1
Next

Restore Dta2 'point to stored data
For Count = 1 To 2 'for number of data items

Ver. 1.11.6.3 BASCOM-AVR Page 130 of 420

 Read A : Print Count ; " " ; A
Next

Restore Dta3
Read S : Print S
Read S : Print S

Restore Dta4
Read L : Print L 'long type

End

Dta1:
Data &B10 , &HFF , 10
Dta2:
Data 1000% , -1%

Dta3:
Data "Hello" , "World"
'Note that integer values (>255 or <0) must end with the %-sign
'also note that the data type must match the variable type that is
'used for the READ statement

Dta4:
Data 123456789&
'Note that LONG values must end with the &-sign
'Also note that the data type must match the variable type that is used
'for the READ statement

$DEFAULT

Action
Set the default for data types dimensioning to the specified type.

Syntax
$DEFAULT = var

Remarks
Var SRAM, XRAM, ERAM

Each variable that is dimensioned will be stored into SRAM, the internal
memory of the chip. You can override it by specifying the data type.
Dim B As XRAM Byte , will store the data into external memory.
When you want all your variables to be stored in XRAM for example, you can
use the statement : $DEFAULT XRAM
Each Dim statement will place the variable in XRAM in that case.

Ver. 1.11.6.3 BASCOM-AVR Page 131 of 420

To switch back to the default behavior, use $END $DEFAULT

See also
NONE

ASM
NONE

Example
$default Xram
Dim A As Byte , B As Byte , C As Byte
'a,b and c will be stored into XRAM

$default Sram
Dim D As Byte
'D will be stored in internal memory, SRAM

$EEPROM

Action
Instruct the compiler to store the data in the DATA lines following the $DATA
directive in an EEP file.

Syntax
$EEPROM

Remarks
The AVR has build in EEPROM. With the WRITEEEPROM and
READEEPROM statements, you can write and read to the EEPROM.
To store information in the EEPROM, you can add DATA lines to your
program that hold the data that must be stored in the EEPROM.

Ver. 1.11.6.3 BASCOM-AVR Page 132 of 420

A separate file is generated with the EEP extension. This file can be used to
program the EEPROM. The build in STK200/300 programmer supports the
EEP file.

The compiler must know which DATA must go into the code memory or the
EEP file and therefore two compiler directives were added.
$EEPROM and $DATA.

$EEPROM tells the compiler that the DATA lines following the compiler
directive, must be stored in the EEP file.
To switch back to the default behavior of the DATA lines, you must use the
$DATA directive.

It is important to know that the RESTORE and READ statements do NOT
work with DATA lines that are stored in the EPROM.
RESTORE and READ only work with normal DATA lines.
The $EEPROM directive is only added to allow you to create a memory image
of the EPROM.
To store and retrieve data from EPROM you should use an ERAM variable :
Dim Store As Eram Byte , B As Byte
B = 10 'assign value to b
Store = B 'value is stored in EPROM
!
B = Store 'get the value back

See also
$DATA , WRITEEEPROM , READEEPROM

ASM
NONE

Example
Dim B As Byte
Restore Lbl 'point to code data
Read B
Print B
Restore Lbl2
Read B
Print B
End

Ver. 1.11.6.3 BASCOM-AVR Page 133 of 420

Lbl:
DATA 100

$eeprom 'the following DATA lines
data will go to the EEP 'file
Data 200

$data 'switch back to normal
Lbl2:
Data 300

$EXTERNAL

Action
Instruct the compiler to include ASM routines from a library.

Syntax
$EXTERNAL Myroutine [, myroutine2]

Remarks
You can place ASM routines in a library file. With the $EXTERNAL directive
you tell the compiler which routines must be included in your program.
An automatic search will be added later so the $EXTERNAL directive will not
be needed any longer.

See also
$LIB

Example
'---
' LIBDEMO.BAS
' (c) 2000 MCS Electronics
'In order to let this work you must put the mylib.lib file in the LIB dir
'And compile it to a LBX
'---
'define the used library
$lib "mylib.lbx"
'you can also use the original ASM :
'$LIB "mylib.LIB"

'also define the used routines
$external Test

'this is needed so the parameters will be placed correct on the stack
Declare Sub Test(byval X As Byte , Y As Byte)

Ver. 1.11.6.3 BASCOM-AVR Page 134 of 420

'reserve some space
Dim Z As Byte

'call our own sub routine
Call Test(1 , Z)

'z will be 2 in the used example
End

$INCLUDE

Action
Includes an ASCII file in the program at the current position.

Syntax
$INCLUDE "file "

Remarks
File Name of the ASCII file, which must contain valid BASCOM statements.

This option can be used if you make use of the same routines in
Many programs. You can write modules and include them into your
program.
If there are changes to make you only have to change the module file,
not all your BASCOM programs.
You can only include ASCII files!

Example
'--
' (c) 1999-2000 MCS Electronics
'--
' file: INCLUDE.BAS
' demo: $INCLUDE
'--
Print "INCLUDE.BAS"
'Note that the file 123.bas contains an error
$include "123.bas" 'include file that prints Hello
Print "Back in INCLUDE.BAS"
End

To get the program working rename the file a_rename.bas into a.bas
The file a.bas is located in the samples dir.

Ver. 1.11.6.3 BASCOM-AVR Page 135 of 420

$LCD

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the
data bus.

Syntax
$LCD = [&H]address

Remarks
Address The address where must be written to, to enable the LCD display

and the RS line of the LCD display.
The db0-db7 lines of the LCD must be connected to the data lines
D0-D7. (or is 4 bit mode, connect only D4-D7)
The RS line of the LCD can be configured with the LCDRS
statement.

On systems with external RAM, it makes more sense to attach the
LCD to the data bus. With an address decoder, you can select the
LCD display.

See also
$LCDRS

Example
REM We use a STK200 board so use the following addresses

$LCD = &HC000 'writing to this address will make the E-line of
the LCD 'high and the RS-line of the LCD high.

$LCDRS = &H8000 'writing to this address will make the E-line of
the LCD 'high.

Cls

LCD "Hello world"

Ver. 1.11.6.3 BASCOM-AVR Page 136 of 420

$LCDPUTCTRL

Action
Specifies that LCD control output must be redirected.

Syntax
$LCDPUTCTRL = label

Remarks
Label The name of the assembler routine that must be called when a control

byte is printed with the LCD statement. The character must be placed in
R24.

With the redirection of the LCD statement, you can use your own routines.

See also
$LCDPUTDATA

Example
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Long

'inform the compiler which routine must be called to get serial 'characters
$lcdputdata = Myoutput
$lcdputctrl = Myoutputctrl
'make a never ending loop
Do
 LCD "test"
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$LCDPUTDATA requires that the character is passed in R24

Myoutput:
 Pushall 'save all registers

Ver. 1.11.6.3 BASCOM-AVR Page 137 of 420

'your code here
 Popall 'restore registers
Return

MyoutputCtrl:
 Pushall 'save all registers
'your code here
 Popall 'restore registers
Return

$LCDPUTDATA
Action
Specifies that LCD data output must be redirected.

Syntax
$LCDPUTDATA = label

Remarks
Label The name of the assembler routine that must be called when a character

is printed with the LCD statement. The character must be placed in R24.

With the redirection of the LCD statement, you can use your own routines.

See also
$LCDPUTCTRL

Example
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Long

'inform the compiler which routine must be called to get serial 'characters
$lcdputdata = Myoutput
$lcdputctrl = Myoutputctrl

Ver. 1.11.6.3 BASCOM-AVR Page 138 of 420

'make a never ending loop
Do
 LCD "test"
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$LCDPUTDATA requires that the character is passed in R24

Myoutput:
 Pushall 'save all registers
'your code here
 Popall 'restore registers
Return

MyoutputCtrl:
 Pushall 'save all registers
'your code here
 Popall 'restore registers
Return

$LCDRS
Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the
data bus.

Syntax
$LCDRS = [&H]address

Remarks
Address The address where must be written to, to enable the LCD display.

The db0-db7 lines of the LCD must be connected to the data lines
D0-D7. (or is 4 bit mode, connect only D4-D7)

On systems with external RAM, it makes more sense to attach the
LCD to the data bus. With an address decoder, you can select the
LCD display.

See also
$LCD

Ver. 1.11.6.3 BASCOM-AVR Page 139 of 420

Example
REM We use a STK200 board so use the following addresses

$LCD = &HC000 'writing to this address will make the E-line of
the LCD 'high and the RS-line of the LCD high.

$LCDRS = &H8000 'writing to this address will make the E-line of
the LCD 'high.

Cls

LCD "Hello world"

$LIB

Action
Informs the compiler about the used libraries.

Syntax
$LIB "libname1" [, "libname2"]

Remarks
Libname1 is the name of the library that holds ASM routines that are used by
your program. More filenames can be specified by separating the names by a
comma.
The libraries will be searched when you specify the routines to use with the
$EXTERNAL directive.
The search order is the same as the order you specify the library names.

The MCS.LBX will be searched last and is always included so you don't need
to specify it with the $LIB directive.
Because the MCS.LBX is searched last you can include duplicate routines in
your own library. Now these routines will be used instead of the ones from the
default MCS.LBX library. This is a good way when you want to enhance the
MCS.LBX routines. Just copy the MCS.LIB to a new file and make the
changes in this new file. When we make changes to the library your changes
will be preserved.

Ver. 1.11.6.3 BASCOM-AVR Page 140 of 420

Creating your own LIB file
A library file is a simple ASCII file. It can be created with the BASCOM editor,
notepad or any other ASCII editor.
The file must include the following header information. It is not used yet but
will be later.

copyright = Your name
www = optional location where people can find the latest source
email = your email address
comment = AVR compiler library
libversion = the version of the library in the format : 1.00
date = date of last modification
statement = A statement with copyright and usage information

The routine must start with the name in brackets and must end with the
[END].

The following ASM routine example is from the MYLIB.LIB library.

[test]
Test:
 ldd r26,y+2 ; load address of X
 ldd r27,y+3
 ld r24,x ; get value into r24
 Inc r24 ; value + 1
 St x,r24 ; put back
 ldd r26,y+0 ; address pf Y
 ldd r27,y+1
 st x,r24 ; store
 ret ; ready
[end]

After you have saved your library in the LIB subdirectory you must compile it
with the LIB Manager. Or you can include it with the LIB extension in which

Ver. 1.11.6.3 BASCOM-AVR Page 141 of 420

case you don’t have to compile it.

See also
$EXTERNAL

Example
'---
' LIBDEMO.BAS
' (c) 2000 MCS Electronics
'In order to let this work you must put the mylib.lib file in the LIB dir
'And compile it to a LBX
'---
'define the used library
$lib "mylib.lib" 'the original asm will be used not the compiled object code

'also define the used routines
$external Test

'this is needed so the parameters will be placed correct on the stack
Declare Sub Test(byval X As Byte , Y As Byte)

'reserve some space
Dim Z As Byte

'call our own sub routine
Call Test(1 , Z)

'z will be 2 in the used example
End

$MAP

Action
Will generate label info in the report.

Syntax
$MAP

Remarks

The $MAP directive will put an entry for each line number with the address
into the report file. This info can be used for debugging purposes with other
tools.

Ver. 1.11.6.3 BASCOM-AVR Page 142 of 420

See also
NONE

ASM
NONE

Example
$MAP

$NOINIT
Action
Instruct the compiler to generate code without initialization code.

Syntax
$NOINIT

Remarks
$NOINIT could be used together with $ROMSTART to generate boot loader
code.

See also
$ROMSTART

ASM
For a simple project the following code will be generated for a 2313:

RJMP _BASICSTART

RETI

Ver. 1.11.6.3 BASCOM-AVR Page 143 of 420

RETI

RETI

RETI

RETI

RETI

RETI

RETI

RETI

RETI

_BASICSTART:

; disable the watchdog timer

ldi _temp1,$1F

out WDTCR,_temp1

ldi _temp1,$17

out WDTCR,_temp1

;Init stackpointer

Ldi R24,$DF ; hardware stack pointer

Out SPL,R24

ldi YL,$C8 ; softstack pointer

ldi ZL,$98

Mov _SPL,ZL ; point to start of frame data

Clr YH

Mov _SPH,YH

Ldi ZL,$7E ;number of bytes

Ldi ZH,$00

Ldi XL,$60 ; start of RAM

Ldi XH,$00

Clr R24

_ClearRAM:

St X+,R24 ; clear

Sbiw ZL,1

Brne _ClearRAM

Clr R6 ; clear internal used flags

;##### Dim X As Byte

;##### X = 1

Ldi _temp1,$01

Sts $0060,R24 ; write value to memory

Ver. 1.11.6.3 BASCOM-AVR Page 144 of 420

As you can see this program just assigns 1 to a byte named X.
First the interrupt vectors are setup then the watchdog timer is cleared , the
stacks are set up, the memory is cleared and an internal register R6 is
cleared.
After that the program begins and you can see that 1 is written to variable X.

Now with $NOINIT the code would look like this :

_BASICSTART:

; disable the watchdog timer

ldi _temp1,$1F

out WDTCR,_temp1

ldi _temp1,$17

out WDTCR,_temp1

;Init stackpointer

Ldi R24,$DF ; hardware stack pointer

Out SPL,R24

ldi YL,$C8 ; softstack pointer

ldi ZL,$98

Mov _SPL,ZL ; point to start of frame data

Clr YH

Mov _SPH,YH

Ldi ZL,$7E ;number of bytes

Ldi ZH,$00

Ldi XL,$60 ; start of RAM

Ldi XH,$00

Clr R24

_ClearRAM:

St X+,R24 ; clear

Sbiw ZL,1

Brne _ClearRAM

Clr R6 ; clear internal used flags

;##### Dim X As Byte

;##### X = 1

Ldi _temp1,$01

Sts $0060,R24 ; write value to memory

As you can see the difference is that the interrupt vectors are not setup.

Ver. 1.11.6.3 BASCOM-AVR Page 145 of 420

The intention for the $NOINIT directive is to create support for a boot loader.
As the boot loader needs are not studied yet, the $NOINIT will most likely be
changed in the near future.

$NORAMCLEAR
Action
Instruct the compiler to not generate initial RAM clear code.

Syntax
$NORAMCLEAR

Remarks
Normally the SRAM is cleared in the initialization code. When you don’t want
the SRAM to be cleared(set to 0) you can use this directive.

Because all variables are automatically set to 0 or ""(strings) without the
$NORAMCLEAR, using $NORAMCLEAR will set the variables to an unknown
value. That is, the variables will probably set to FF but you cannot count on it.

See also
$NOINIT

$REGFILE

Action
Instruct the compiler to use the specified register file instead of the selected
dat file.

Ver. 1.11.6.3 BASCOM-AVR Page 146 of 420

Syntax
$REGFILE = "name"

Remarks
Name The name of the register file. The register files are stored in the

BASCOM-AVR application directory and they all end with the DAT
extension.
The register file holds information about the chip such as the internal
registers and interrupt addresses.

The $REGFILE statement overrides the setting from the Options menu.
The settings are stored in a <project>.CFG file and the directive is added for
compatibility with BASCOM-8051

The $REGFILE directive must be the first statement in your program. It may
not be put into an included file since only the main source file is checked for
the $REGFILE directive.

See also
NONE

ASM
NONE

Example
$REGFILE = "8515DEF.DAT"

$ROMSTART
Action
Instruct the compiler to generate a hex file that starts at the specified address.

Ver. 1.11.6.3 BASCOM-AVR Page 147 of 420

Syntax
$ROMSTART = address

Remarks
Address The address where the code must start. By default the first address

is 0.
The bin file will still begin at address 0..

The $ROMFILE could be used to locate code at a different address for
example for a boot loader.

See also
NONE

ASM
NONE

Example
$ROMSTART = &H4000

$SERIALINPUT

Action
Specifies that serial input must be redirected.

Syntax
$SERIALINPUT = label

Remarks

Ver. 1.11.6.3 BASCOM-AVR Page 148 of 420

Label The name of the assembler routine that must be called when a character
is needed from the INPUT routine. The character must be returned in
R24.

With the redirection of the INPUT command, you can use your own input
routines.
This way you can use other devices as input devices.
Note that the INPUT statement is terminated when a RETURN code (13) is
received.
By default when you use INPUT or INKEY(), the compiler will expect data
from the COM port. When you want to use a keyboard or remote control as
the input device you can write a custom routine that puts the data into register
R24 once it asks for this data.

See also
$SERIALOUTPUT

Example
'--
' $serialinput.bas
' (c) 1999 MCS Electronics
' demonstrates $SERIALINPUT redirection of serial input
'--
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Long

'inform the compiler which routine must be called to get serial characters
$serialinput = Myinput

'make a never ending loop
Do
 'ask for name
 Input "name " , S
 Print S
 'error is set on time out
 Print "Error " ; Err
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and restore
'all registers so we can use all BASIC statements
'$SERIALINPUT requires that the character is passed back in R24
Myinput:
 Pushall 'save all registers

Ver. 1.11.6.3 BASCOM-AVR Page 149 of 420

 W = 0 'reset counter
Myinput1:
 Incr W 'increase counter
 Sbis USR, 7 ' Wait for character
 Rjmp myinput2 'no charac waiting so
check again
 Popall 'we got something
 Err = 0 'reset error
 In _temp1, UDR ' Read character from
UART
 Return 'end of routine
Myinput2:
 If W > 1000000 Then 'with 4 MHz ca 10 sec
delay
 rjmp Myinput_exit 'waited too long
 Else
 Goto Myinput1 'try again
 End If
Myinput_exit:
 Popall 'restore registers
 Err = 1 'set error variable
 ldi R24, 13 'fake enter so INPUT
will end
Return

$SERIALINPUT2LCD

Action

This compiler directive will redirect all serial input to the LCD display instead
of echo-ing to the serial port.

Syntax

$SERIALINPUT2LCD

Remarks

You can also write your own custom input or output driver with the
$SERIALINPUT and $SERIALOUTPUT statements, but the
$SERIALINPUT2LCD is handy when you use a LCD display.

See also

$SERIALINPUT , $SERIALOUTPUT

Ver. 1.11.6.3 BASCOM-AVR Page 150 of 420

Example

$serialinput2lcd
Dim v as Byte
Cls
Input "Number " , V 'this will go to the LCD display

$SERIALOUTPUT

Action

Specifies that serial output must be redirected.

Syntax

$SERIALOUTPUT = label

Remarks
Label The name of the assembler routine that must be called when a character

is send to the serial buffer (UDR).
The character is placed into R24.

With the redirection of the PRINT and other serial output related commands,
you can use your own routines.
This way you can use other devices as output devices.

See also
$SERIALINPUT , $SERIALINPUT2LCD

Ver. 1.11.6.3 BASCOM-AVR Page 151 of 420

Example

$serialoutput = Myoutput
 'your program goes here
 Do
 Print "Hello"
 Loop
End

myoutput:
 'perform the needed actions here
 'the data arrives in R24
 'just set the output to PORTB
 !out portb,r24
ret

$SIM
Action
Instruct the compiler to generate empty wait loops for the WAIT and WAITMS
statements. This to allow faster simulation.

Syntax
$SIM

Remarks
Simulation of a WAIT statement can take a long time especially when memory
view windows are opened.
The $SIM compiler directive instructs the compiler to not generate code for
WAITMS and WAIT. This will of course allows faster simulation.
When your application is ready you must remark the $SIM directive or
otherwise the WAIT and WAITMS statements will not work as expected.
When you forget to remove the $SIM option and you try to program a chip you
will receive a warning that $SIM was used.

See also
NONE

Ver. 1.11.6.3 BASCOM-AVR Page 152 of 420

ASM
NONE

Example
$SIM

Do

 Wait 1

Loop

$TINY
Action
Instruct the compiler to generate initialize code without setting up the stacks.

Syntax
$TINY

Remarks
The tiny11 for example is a powerful chip. It only does not have SRAM.
BASCOM depends on SRAM for the hardware stack and software stack.
When you like to program in ASM you can use BASCOM with the $TINY
directive.
Some BASCOM statements will also already work but the biggest part will not
work.
BASCOM will support a subset of the BASCOM statements and function to be
used with the chips without SRAM. There will be a special tiny.lib that will use
little registers and will have at most a 3 level deep call since tiny chips do
have a 3 level deep hardware stack that may be used for calls.

Note that the generated code is not yet optimized for the tiny parts. The $tiny

Ver. 1.11.6.3 BASCOM-AVR Page 153 of 420

directive is just a start of the tiny parts implementation!
No support is available for this feature until the tiny.lib is implemented.

See also
NONE

ASM
NONE

Example
$tiny
dim X AS iram BYTE, y AS iram BYTE
X = 1 : Y = 2 : X = x + y

$WAITSTATE

Action

Compiler directive to activate external SRAM and to insert a WAIT STATE for
a slower ALE signal.

Syntax

$WAITSTATE

Remarks
The $WAITSTATE can be used to override the Compiler Chip Options setting.

See also
 NA

Example

Ver. 1.11.6.3 BASCOM-AVR Page 154 of 420

$WAITSTATE

$XRAMSIZE

Action

Specifies the size of the external RAM memory.

Syntax

$XRAMSIZE = [&H] size

Remarks
Size Size of external RAM memory chip.
size : Constant.

The size of the chip can be selected from the Options Compiler Chip menu.
The $XRAMSIZE overrides this setting.

See also
$XRAMSTART

Example
$XRAMSTART = &H300

$RAMSIZE = &H1000
DIM x AS XRAM Byte 'specify XRAM to store variable in XRAM

Ver. 1.11.6.3 BASCOM-AVR Page 155 of 420

$XRAMSTART

Action

Specifies the location of the external RAM memory.

Syntax

$XRAMSTART = [&H]address

Remarks
Address The (hex)-address where the data is stored.

Or the lowest address that enables the RAM chip.
You can use this option when you want to run your code in
systems with external RAM memory.

address : Constant.

By default the extended RAM will start after the internal memory so the lower
addresses of the external RAM can't be used to store information.
When you want to protect an area of the chip, you can specify a higher
address for the compiler to store the data. For example, you can specify
&H400. The first dimensioned variable will be placed in address &H400 and
not in &H260.

It is important that when you use $XRAMSTART and $XRAMSIZE that
$XRAMSIZE comes before $XRAMSTART.

See also
$XRAMSIZE

Example
$XRAMSIZE = &H1000

$XRAMSTART = &H400

Ver. 1.11.6.3 BASCOM-AVR Page 156 of 420

Dim B As XRAM Byte

1WIRECOUNT

Action
This statement reads the number of 1wire devices attached to the bus.

Syntax
var2 = 1WIRECOUNT()
var2 = 1WIRECOUNT(port , pin)

Remarks
var2 A WORD variable that is assigned with the number of

devices on the bus.
port The PIN port name like PINB or PIND.
pin The pin number of the port. In the range from 0-7. May be a

numeric constant or variable.

The variable must be of the type word or integer.
You can use the 1wirecount() function to know how many times the
1wsearchNext() function should be called to get all the ID's on the bus.

The 1wirecount function will take 4 bytes of SRAM.
___1w_bitstorage , Byte used for bit storage :
 lastdeviceflag bit 0
 id_bit bit 1
 cmp_id_bit bit 2
 search_dir bit 3
___1wid_bit_number, Byte
___1wlast_zero, Byte
___1wlast_discrepancy , Byte

Ver. 1.11.6.3 BASCOM-AVR Page 157 of 420

ASM
The following asm routines are called from mcs.lib.
_1wire_Count : (calls _1WIRE, _1WIRE_SEARCH_FIRST ,
_1WIRE_SEARCH_NEXT)
Parameters passed : R24 : pin number, R30 : port , Y+0,Y+1 : 2 bytes of soft
stack, X : pointer to the frame space
Returns Y+0 and Y+1 with the value of the count. This is assigned to the
target variable.

See also
1WWRITE , 1WRESET , 1WREAD , 1WSEARCHFIRST,
1WSEARCHNEXT

Example
'---
' '1wireSearch.bas
' (c) 2000 MCS Electronics
' revision b, 27 dec 2000
'---
Config 1wire = Portb.0 'use this pin
'On the STK200 jumper B.0 must be inserted

'The following internal bytes are used by the scan routines
'___1w_bitstorage , Byte used for bit storage :
' lastdeviceflag bit 0
' id_bit bit 1
' cmp_id_bit bit 2
' search_dir bit 3
'___1wid_bit_number, Byte
'___1wlast_zero, Byte
'___1wlast_discrepancy , Byte
'___1wire_data , string * 7 (8 bytes)

'[DIM variables used]
'we need some space from at least 8 bytes to store the ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting the ID's on the bus
Dim I As Byte , W As Word

'Now search for the first device on the bus
Reg_no(1) = 1wsearchfirst()

For I = 1 To 8 'print the number
 Print Hex(reg_no(i));
Next
Print

Do
 'Now search for other devices
 Reg_no(1) = 1wsearchnext()
 For I = 1 To 8
 Print Hex(reg_no(i));
 Next

Ver. 1.11.6.3 BASCOM-AVR Page 158 of 420

 Print
Loop Until Err = 1

'When ERR = 1 is returned it means that no device is found anymore
'You could also count the number of devices
W = 1wirecount()
'It is IMPORTANT that the 1wirecount function returns a word/integer
'So the result variable must be of the type word or integer
'But you may assign it to a byte or long too of course
Print W

'as a bonus the next routine :
' first fill the array with an existing number
Reg_no(1) = 1wsearchfirst()
' unremark next line to chance a byte to test the ERR flag
'Reg_no(1) = 2
'now verify if the number exists
1wverify Reg_no(1)
Print Err
'err =1 when the ID passed n reg_no() does NOT exist
' optinal call it with pinnumber line 1wverify reg_no(1),pinb,1

'As for the other 1wire statements/functions, you can provide the port and pin number
as anoption
'W = 1wirecount(pinb , 1) 'for example look at pin
PINB.1
End

1WREAD
Action
This statement reads data from the 1wire bus into a variable.

Syntax
var2 = 1WREAD([bytes])
var2 = 1WREAD(bytes , port , pin)

Remarks
var2 Reads a byte from the bus and places it into var2.

Optional the number of bytes to read can be specified.
Port The PIN port name like PINB or PIND.
Pin The pin number of the port. In the range from 0-7. Maybe a

numeric constant or variable.

New is support for multi 1-wire devices on different pins.
To use this you must specify the port pin that is used for the communication.
The 1wreset, 1wwrite and 1wread statements will work together when used

Ver. 1.11.6.3 BASCOM-AVR Page 159 of 420

with the old syntax. And the pin can be configured from the compiler options
or with the CONFIG 1WIRE statement.

The syntax for additional 1-wire devices is :
1WRESET port, pin
1WWRITE var/constant , bytes, port, pin
var = 1WREAD(bytes, port, pin) for reading multiple bytes

See also
1WWRITE , 1WRESET

Example
'--
' 1WIRE.BAS (c) 2000 MCS Electronics
' demonstrates 1wreset, 1wwrite and 1wread()
' pull-up of 4K7 required to VCC from Portb.2
' DS2401 serial button connected to Portb.2
'--
'when only bytes are used, use the following lib for smaller code
$lib "mcsbyte.lib"

Config 1wire = Portb.0 'use this pin
'On the STK200 jumper B.0 must be inserted
Dim Ar(8) As Byte , A As Byte , I As Byte

Do
 Wait 1
 1wreset 'reset the device
 Print Err 'print error 1 if error
 1wwrite &H33 'read ROM command
 For I = 1 To 8
 Ar(i) = 1wread() 'place into array
 Next

'You could also read 8 bytes a time by unremarking the next line
'and by deleting the for next above
'Ar(1) = 1wread(8) 'read 8 bytes

 For I = 1 To 8
 Print Hex(ar(i)); 'print output
 Next
 Print 'linefeed
Loop

'NOTE THAT WHEN YOU COMPILE THIS SAMPLE THE CODE WILL RUN TO THIS POINT
'THIS because of the DO LOOP that is never terminated!!!

'New is the possibility to use more than one 1 wire bus
'The following syntax must be used:
For I = 1 To 8
 Ar(i) = 0 'clear array to see
that it works
Next

1wreset Pinb , 2 'use this port and pin

Ver. 1.11.6.3 BASCOM-AVR Page 160 of 420

for the second device
1wwrite &H33 , 1 , Pinb , 2 'note that now the
number of bytes must be specified!
'1wwrite Ar(1) , 5,pinb,2

'reading is also different
Ar(1) = 1wread(8 , Pinb , 2) 'read 8 bytes from
portB on pin 2

For I = 1 To 8
 Print Hex(ar(i));
Next

'you could create a loop with a variable for the bit number !
For I = 0 To 3 'for pin 0-3
 1wreset Pinb , I
 1wwrite &H33 , 1 , Pinb , I
 Ar(1) = 1wread(8 , Pinb , I)
 For A = 1 To 8
 Print Hex(ar(a));
 Next
 Print
Next

End

1WRESET

Action

This statement brings the 1wire pin to the correct state, and sends a reset to
the bus.

Syntax

1WRESET

1WRESET , PORT , PIN

Remarks

1WRESET Reset the 1WIRE bus. The error variable ERR will return 1 if an
error occurred

Port The register name of the input port. Like PINB, PIND.
Pin The pin number to use. In the range from 0-7. May be a

numeric constant or variable.

The variable ERR is set when an error occurs.
New is support for multi 1-wire devices on different pins.
To use this you must specify the port and pin that is used for the
communication.

Ver. 1.11.6.3 BASCOM-AVR Page 161 of 420

The 1wreset, 1wwrite and 1wread statements will work together when used
with the old syntax. And the pin can be configured from the compiler options
or with the CONFIG 1WIRE statement.

The syntax for additional 1-wire devices is :
1WRESET port , pin
1WWRITE var/constant ,bytes] , port, pin
var = 1WREAD(bytes) , for the configured 1 wire pin
var = 1WREAD(bytes, port, pin) ,for reading multiple bytes

See also
1WREAD , 1WWRITE

Example
'--
' 1WIRE.BAS (c) 2000 MCS Electronics
' demonstrates 1wreset, 1wwrite and 1wread()
' pull-up of 4K7 required to VCC from Portb.2
' DS2401 serial button connected to Portb.2
'--
'when only bytes are used, use the following lib for smaller code
$lib "mcsbyte.lib"

Config 1wire = Portb.0 'use this pin
'On the STK200 jumper B.0 must be inserted
Dim Ar(8) As Byte , A As Byte , I As Byte

Do
 Wait 1
 1wreset 'reset the device
 Print Err 'print error 1 if error
 1wwrite &H33 'read ROM command
 For I = 1 To 8
 Ar(i) = 1wread() 'place into array
 Next

'You could also read 8 bytes a time by unremarking the next line
'and by deleting the for next above
'Ar(1) = 1wread(8) 'read 8 bytes

 For I = 1 To 8
 Print Hex(ar(i)); 'print output
 Next
 Print 'linefeed
Loop

'NOTE THAT WHEN YOU COMPILE THIS SAMPLE THE CODE WILL RUN TO THIS POINT
'THIS because of the DO LOOP that is never terminated!!!

'New is the possibility to use more than one 1 wire bus
'The following syntax must be used:
For I = 1 To 8
 Ar(i) = 0 'clear array to see
that it works
Next

Ver. 1.11.6.3 BASCOM-AVR Page 162 of 420

1wreset Pinb , 2 'use this port and pin
for the second device
1wwrite &H33 , 1 , Pinb , 2 'note that now the
number of bytes must be specified!
'1wwrite Ar(1) , 5,pinb,2

'reading is also different
Ar(1) = 1wread(8 , Pinb , 2) 'read 8 bytes from
portB on pin 2

For I = 1 To 8
 Print Hex(ar(i));
Next

'you could create a loop with a variable for the bit number !
For I = 0 To 3 'for pin 0-3
 1wreset Pinb , I
 1wwrite &H33 , 1 , Pinb , I
 Ar(1) = 1wread(8 , Pinb , I)
 For A = 1 To 8
 Print Hex(ar(a));
 Next
 Print
Next

End

1WSEARCHFIRST
Action
This statement reads the first ID from the 1wire bus into a variable(array).

Syntax
var2 = 1WSEARCHFIRST()
var2 = 1WSEARCHFIRST(port , pin)

Remarks
var2 A variable or array that should be at least 8 bytes long that

will be assigned with the 8 byte ID from the first 1wire device
on the bus.

port The PIN port name like PINB or PIND.
pin The pin number of the port. In the range from 0-7. Maybe a

numeric constant or variable.

The 1wireSearchFirst() function must be called once to initiate the ID retrieval
process. After the 1wireSearchFirst() function is used you should use
successive function calls to the 1wireSearchNext function to retrieve other
ID's on the bus.

Ver. 1.11.6.3 BASCOM-AVR Page 163 of 420

A string can not be assigned to get the values from the bus. This because a
nul may be returned as a value and the nul is also used as a string terminator.
I would advice to use a byte array as shown in the example.

The 1wirecount function will take 4 bytes of SRAM.
___1w_bitstorage , Byte used for bit storage :
 lastdeviceflag bit 0
 id_bit bit 1
 cmp_id_bit bit 2
 search_dir bit 3
___1wid_bit_number, Byte
___1wlast_zero, Byte
___1wlast_discrepancy , Byte

ASM
The following asm routines are called from mcs.lib.
_1wire_Search_First : (calls _1WIRE, _ADJUST_PIN ,
_ADJUST_BIT_ADDRESS)
Parameters passed : R24 : pin number, R30 : port , X : address of target array
Returns nothing.

See also
1WWRITE , 1WRESET , 1WREAD , 1WSEARCHNEXT, 1WIRECOUNT

Example
'--

' '1wireSearch.bas
' (c) 2000 MCS Electronics
' revision b, 27 dec 2000
'--

Config 1wire = Portb.0
'use this pin

Ver. 1.11.6.3 BASCOM-AVR Page 164 of 420

'On the STK200 jumper B.0 must be inserted

'The following internal bytes are used by the scan
routines
'___1w_bitstorage , Byte used for bit storage :
' lastdeviceflag bit 0
' id_bit bit 1
' cmp_id_bit bit 2
' search_dir bit 3
'___1wid_bit_number, Byte
'___1wlast_zero, Byte
'___1wlast_discrepancy , Byte
'___1wire_data , string * 7 (8 bytes)

'[DIM variables used]
'we need some space from at least 8 bytes to store the ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting
the ID's on the bus
Dim I As Byte , W As Word

'Now search for the first device on the bus
Reg_no(1) = 1wsearchfirst()

For I = 1 To 8
'print the number
 Print Hex(reg_no(i));
Next
Print

Do
 'Now search for other devices
 Reg_no(1) = 1wsearchnext()
 For I = 1 To 8
 Print Hex(reg_no(i));
 Next
 Print
Loop Until Err = 1

'When ERR = 1 is returned it means that no device is
found anymore
'You could also count the number of devices
W = 1wirecount()
'It is IMPORTANT that the 1wirecount function returns a
word/integer
'So the result variable must be of the type word or
integer
'But you may assign it to a byte or long too of course
Print W

Ver. 1.11.6.3 BASCOM-AVR Page 165 of 420

'as a bonus the next routine :
' first fill the array with an existing number
Reg_no(1) = 1wsearchfirst()
' unremark next line to chance a byte to test the ERR
flag
'Reg_no(1) = 2
'now verify if the number exists
1wverify Reg_no(1)
Print Err
'err =1 when the ID passed n reg_no() does NOT exist
' optinal call it with pinnumber line 1wverify
reg_no(1),pinb,1

'As for the other 1wire statements/functions, you can
provide the port and pin number as anoption
'W = 1wirecount(pinb , 1)
'for example look at pin PINB.1
End

1WSEARCHNEXT

Action
This statement reads the next ID from the 1wire bus into a variable(array).

Syntax
var2 = 1WSEARCHNEXT()
var2 = 1WSEARCHNEXT(port , pin)

Remarks
var2 A variable or array that should be at least 8 bytes long that

will be assigned with the 8 byte ID from the next 1wire device
on the bus.

Port The PIN port name like PINB or PIND.
Pin The pin number of the port. In the range from 0-7. May be a

numeric constant or variable.

The 1wireSearchFirst() function must be called once to initiate the ID retrieval
process. After the 1wireSearchFirst() function is used you should use
successive function calls to the 1wireSearchNext function to retrieve other

Ver. 1.11.6.3 BASCOM-AVR Page 166 of 420

ID's on the bus.
A string can not be assigned to get the values from the bus. This because a
nul may be returned as a value and the nul is also used as a string terminator.
I would advice to use a byte array as shown in the example.

The 1wirecount function will take 4 bytes of SRAM.
___1w_bitstorage , Byte used for bit storage :
 lastdeviceflag bit 0
 id_bit bit 1
 cmp_id_bit bit 2
 search_dir bit 3
___1wid_bit_number, Byte
___1wlast_zero, Byte
___1wlast_discrepancy , Byte

ASM
The following asm routines are called from mcs.lib.
_1wire_Search_Next : (calls _1WIRE, _ADJUST_PIN ,
_ADJUST_BIT_ADDRESS)
Parameters passed : R24 : pin number, R30 : port , X : address of target array
Returns nothing.

See also
1WWRITE , 1WRESET , 1WREAD , 1WSEARCHFIRST, 1WIRECOUNT

Example
'--

' '1wireSearch.bas
' (c) 2000 MCS Electronics
' revision b, 27 dec 2000
'--

Ver. 1.11.6.3 BASCOM-AVR Page 167 of 420

Config 1wire = Portb.0
'use this pin
'On the STK200 jumper B.0 must be inserted

'The following internal bytes are used by the scan
routines
'___1w_bitstorage , Byte used for bit storage :
' lastdeviceflag bit 0
' id_bit bit 1
' cmp_id_bit bit 2
' search_dir bit 3
'___1wid_bit_number, Byte
'___1wlast_zero, Byte
'___1wlast_discrepancy , Byte
'___1wire_data , string * 7 (8 bytes)

'[DIM variables used]
'we need some space from at least 8 bytes to store the ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting
the ID's on the bus
Dim I As Byte , W As Word

'Now search for the first device on the bus
Reg_no(1) = 1wsearchfirst()

For I = 1 To 8
'print the number
 Print Hex(reg_no(i));
Next
Print

Do
 'Now search for other devices
 Reg_no(1) = 1wsearchnext()
 For I = 1 To 8
 Print Hex(reg_no(i));
 Next
 Print
Loop Until Err = 1

'When ERR = 1 is returned it means that no device is
found anymore
'You could also count the number of devices
W = 1wirecount()
'It is IMPORTANT that the 1wirecount function returns a
word/integer
'So the result variable must be of the type word or
integer

Ver. 1.11.6.3 BASCOM-AVR Page 168 of 420

'But you may assign it to a byte or long too of course
Print W

'as a bonus the next routine :
' first fill the array with an existing number
Reg_no(1) = 1wsearchfirst()
' unremark next line to chance a byte to test the ERR
flag
'Reg_no(1) = 2
'now verify if the number exists
1wverify Reg_no(1)
Print Err
'err =1 when the ID passed n reg_no() does NOT exist
' optinal call it with pinnumber line 1wverify
reg_no(1),pinb,1

'As for the other 1wire statements/functions, you can
provide the port and pin number as anoption
'W = 1wirecount(pinb , 1)
'for example look at pin PINB.1
End

1WVERIFY
Action
This verifies if an ID is available on the 1wire bus.

Syntax
1WVERIFY ar(1)

Remarks

Ar(1) A byte array that holds the ID to verify.

Returns ERR set to 0 when the ID is found on the bus otherwise it will be 1.

ASM

Ver. 1.11.6.3 BASCOM-AVR Page 169 of 420

The following asm routines are called from mcs.lib.
_1wire_Search_Next : (calls _1WIRE, _ADJUST_PIN ,
_ADJUST_BIT_ADDRESS)

See also
1WWRITE , 1WRESET , 1WREAD , 1WSEARCHFIRST, 1WIRECOUNT

Example
'--

' '1wireSearch.bas
' (c) 2000 MCS Electronics
' revision b, 27 dec 2000
'--

Config 1wire = Portb.0
'use this pin
'On the STK200 jumper B.0 must be inserted

'The following internal bytes are used by the scan
routines
'___1w_bitstorage , Byte used for bit storage :
' lastdeviceflag bit 0
' id_bit bit 1
' cmp_id_bit bit 2
' search_dir bit 3
'___1wid_bit_number, Byte
'___1wlast_zero, Byte
'___1wlast_discrepancy , Byte
'___1wire_data , string * 7 (8 bytes)

'[DIM variables used]
'we need some space from at least 8 bytes to store the
ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting
the ID's on the bus
Dim I As Byte , W As Word

'Now search for the first device on the bus
Reg_no(1) = 1wsearchfirst()

For I = 1 To 8
'print the number
 Print Hex(reg_no(i));
Next

Ver. 1.11.6.3 BASCOM-AVR Page 170 of 420

Print

Do
 'Now search for other devices
 Reg_no(1) = 1wsearchnext()
 For I = 1 To 8
 Print Hex(reg_no(i));
 Next
 Print
Loop Until Err = 1

'When ERR = 1 is returned it means that no device is
found anymore
'You could also count the number of devices
W = 1wirecount()
'It is IMPORTANT that the 1wirecount function returns a
word/integer
'So the result variable must be of the type word or
integer
'But you may assign it to a byte or long too of course
Print W

'as a bonus the next routine :
' first fill the array with an existing number
Reg_no(1) = 1wsearchfirst()
' unremark next line to chance a byte to test the ERR
flag
'Reg_no(1) = 2
'now verify if the number exists
1wverify Reg_no(1)
Print Err
'err =1 when the ID passed n reg_no() does NOT exist
' optinal call it with pinnumber line 1wverify
reg_no(1),pinb,1

'As for the other 1wire statements/functions, you can
provide the port and pin number as anoption
'W = 1wirecount(pinb , 1)
'for example look at pin PINB.1
End

1WWRITE
Action
This statement writes a variable to the 1wire bus.

Ver. 1.11.6.3 BASCOM-AVR Page 171 of 420

Syntax
1WWRITE var1
1WWRITE var1, bytes
1WWRITE var1 , bytes , port , pin

Remarks
var1 Sends the value of var1 to the bus. The number of bytes can be

specified too but this is optional.
bytes The number of bytes to write. Must be specified when port and

pin are used.
port The name of the PORT PINx register like PINB or PIND.
pin The pin number in the range from 0-7. May be a numeric

constant or variable.

New is support for multi 1-wire devices on different pins.
To use this you must specify the port and pin that are used for the
communication.
The 1wreset, 1wwrite and 1wread statements will work together when used
with the old syntax. And the pin can be configured from the compiler options
or with the CONFIG 1WIRE statement.

The syntax for additional 1-wire devices is :
1WRESET port , pin
1WWRITE var/constant, bytes, port , pin
var = 1WREAD(bytes, port, pin) ,for reading multiple bytes

See also
1WREAD , 1WRESET

Ver. 1.11.6.3 BASCOM-AVR Page 172 of 420

Example
'--
' 1WIRE.BAS (c) 2000 MCS Electronics
' demonstrates 1wreset, 1wwrite and 1wread()
' pull-up of 4K7 required to VCC from Portb.2
' DS2401 serial button connected to Portb.2
'--
'when only bytes are used, use the following lib for smaller code
$lib "mcsbyte.lib"

Config 1wire = Portb.0 'use this pin
'On the STK200 jumper B.0 must be inserted
Dim Ar(8) As Byte , A As Byte , I As Byte

Do
 Wait 1
 1wreset 'reset the device
 Print Err 'print error 1 if error
 1wwrite &H33 'read ROM command
 For I = 1 To 8
 Ar(i) = 1wread() 'place into array
 Next

'You could also read 8 bytes a time by unremarking the next line
'and by deleting the for next above
'Ar(1) = 1wread(8) 'read 8 bytes

 For I = 1 To 8
 Print Hex(ar(i)); 'print output
 Next
 Print 'linefeed
Loop

'NOTE THAT WHEN YOU COMPILE THIS SAMPLE THE CODE WILL RUN TO THIS POINT
'THIS because of the DO LOOP that is never terminated!!!

'New is the possibility to use more than one 1 wire bus
'The following syntax must be used:
For I = 1 To 8
 Ar(i) = 0 'clear array to see
that it works
Next

1wreset Pinb , 2 'use this port and pin
for the second device
1wwrite &H33 , 1 , Pinb , 2 'note that now the
number of bytes must be specified!
'1wwrite Ar(1) , 5,pinb,2

'reading is also different
Ar(1) = 1wread(8 , Pinb , 2) 'read 8 bytes from
portB on pin 2

For I = 1 To 8
 Print Hex(ar(i));
Next

'you could create a loop with a variable for the bit number !
For I = 0 To 3 'for pin 0-3
 1wreset Pinb , I
 1wwrite &H33 , 1 , Pinb , I
 Ar(1) = 1wread(8 , Pinb , I)
 For A = 1 To 8
 Print Hex(ar(a));
 Next
 Print
Next

End

Ver. 1.11.6.3 BASCOM-AVR Page 173 of 420

ALIAS

Action
Indicates that the variable can be referenced with another name.

Syntax
newvar ALIAS oldvar

Remarks
Oldvar Name of the variable such as PORTB.1
newvar New name of the variable such as direction

Aliasing port pins can give the pin names a more meaningful name.

See also
CONST

Example
Config Pinb.1 = Output
Direction Alias Portb.1 'now you can refer to PORTB.1 with the variable
direction
Do
 Set Direction 'has the same effect as SET PORTB.1
 Waitms 1
 Reset Directopn
Loop
End

ABS()
Action
Returns the absolute value of a numeric signed variable.

Syntax

Ver. 1.11.6.3 BASCOM-AVR Page 174 of 420

var = ABS(var2)

Remarks
Var Variable that is assigned the absolute value of var2.
Var2 The source variable to retrieve the absolute value from.

var : Integer or Long.
var2 : Integer, Long.

The absolute value of a number is always positive.

See also
NONE

Difference with QB
You can not use numeric constants since the absolute value is obvious for
numeric constants.
Does not work with Singles.

Asm
Calls: _abs16 for an Integer and _abs32 for a Long
Input: R16-R17 for an Integer and R16-R19 for a Long
Output:R16-R17 for an Integer and R16-R19 for a Long

Example
Dim a as Integer, c as Integer
a = -1000
c = Abs(a)
Print c
End

Ver. 1.11.6.3 BASCOM-AVR Page 175 of 420

ASC

Action
Assigns a numeric variable with the ASCII value of the first character of a
string.

Syntax
var = ASC(string)

Remarks
Var Target numeric variable that is assigned.
String String variable or constant from which to retrieve the ASCII value.

var : Byte, Integer, Word, Long.
string : String, Constant.

Note that only the first character of the string will be used.
When the string is empty, a zero will be returned.

See also
CHR

Asm
NONE

Example
Dim a as byte, s as String * 10
s = "ABC"
a = Asc(s)
Print a 'will print 65
End

Ver. 1.11.6.3 BASCOM-AVR Page 176 of 420

BAUD

Action
Changes the baud rate for the hardware UART.

Syntax
BAUD = var
BAUD #x , const

Remarks
Var The baud rate that you want to use.
X The channel number of the software uart.
Const A numeric constant for the baud rate that you want to use.

Do not confuse the BAUD statement with the $BAUD compiler directive.
And do not confuse $CRYSTAL and CRYSTAL
$BAUD overrides the compiler setting for the baud rate and BAUD will change
the current baud rate.
BAUD = ... will work on the hardware UART.
BAUD #x, yyyy will work on the software UART.

See also
$CRYSTAL , $BAUD

Asm
NONE

Example

Ver. 1.11.6.3 BASCOM-AVR Page 177 of 420

$baud = 2400
$crystal = 14000000 ' 14 MHz crystal
Print "Hello"
'Now change the baudrate in a program
Baud = 9600 '
Print "Did you change the terminal emulator baud rate too?"
End

BCD

Action
Converts a variable stored in BCD format into a string.

Syntax
PRINT BCD(var)

LCD BCD(var)

Remarks
Var Variable to convert.

var1 : Byte, Integer, Word, Long, Constant.

When you want to use an I2C clock device which stores its values in BCD
format you can use this function to print the value correctly.
BCD() displays values with a leading zero.

The BCD() function is intended for the PRINT/LCD statements.
Use the MAKEBCD function to convert variables from decimal to BCD.
Use the MAKEDEC function to convert variables from BCD to decimal.

See also
MAKEDEC , MAKEBCD

Ver. 1.11.6.3 BASCOM-AVR Page 178 of 420

Asm
Calls: _BcdStr
Input: X hold address of variable
Output: R0 with number of bytes, frame with data.

Example

Dim A As Byte
A = 65
Print A ' 65
Print Bcd(a) ' 41
End

BIN
Action
Convert a numeric variable into the binary string representaion.

Syntax
Var = Bin(source)

Remarks
Var The target string that will be assigned with the binary

representation of the variable source.
Source The numeric variable that will be converted.

The BIN() function can be used to display the state of a port.
When the variable source has the value &B10100011 the string named var
will be assigned with "10100011".
It can be easily printed to the serial port.

See also
HEX , STR , VAL , HEXVAL

Ver. 1.11.6.3 BASCOM-AVR Page 179 of 420

ASM
NONE

Example
Dim A As Byte

A = &H14

Print Bin(a)

Prints 00010100

BITWAIT

Action
Wait until a bit is set or reset.

Syntax
BITWAIT x , SET/RESET

Remarks
X Bit variable or internal register like PORTB.x , where x ranges from 0-7.

When using bit variables make sure that they are set/reset by software
otherwise your program will stay in a loop.
When you use internal registers that can be set/reset by hardware such as
PORTB.0 this doesn't apply since this state can change as a result from for
example a key press.

See also

Ver. 1.11.6.3 BASCOM-AVR Page 180 of 420

NONE

Asm
Calls: NONE
Input: NONE
Output: NONE
Code : shown for address 0-31

label1:
Sbic PINB.0,label2
Rjmp label1
Label2:

Example
Dim A As Bit
Bitwait A , Set 'wait until bit a is set
Bitwait Portb.7 , Reset 'wait until bit 7 of Port B is 0.
End

BYVAL

Action
Specifies that a variable will be passed by value.

Syntax
Sub Test(BYVAL var)

Remarks
Var Variable name

The default for passing variables to SUBS and FUNCTIONS, is by
reference(BYREF). When you pass a variable by reference, the address is

Ver. 1.11.6.3 BASCOM-AVR Page 181 of 420

passed to the SUB or FUNCTION. When you pass a variable by Value, a
temp variable is created on the frame and the address of the copy is passed.
When you pass by reference, changes to the variable will be made to the
calling variable.
When you pass by value, changes to the variable will be made to the copy so
the original value will not be changed.

By default passing by reference is used.
Note that calling by reference will generate less code.

See also
CALL , DECLARE , SUB , FUNCTION

ASM
NONE

Example
Declare Sub Test(Byval X As Byte, Byref Y As Byte, Z As Byte)

CALL

Action
Call and execute a subroutine.

Syntax
CALL Test [(var1, var-n)]

Remarks
Var1 Any BASCOM variable or constant.

Ver. 1.11.6.3 BASCOM-AVR Page 182 of 420

Var-n Any BASCOM variable or constant.
Test Name of the subroutine. In this case Test.
You can call sub routines with or without passing parameters.

It is important that the SUB routine is DECLARED before you make the CALL
to the subroutine. Of course the number of declared parameters must match
the number of passed parameters.

It is also important that when you pass constants to a SUB routine, you must
DECLARE these parameters with the BYVAL argument.

With the CALL statement, you can call a procedure or subroutine.
For example: Call Test2

The call statement enables you to implement your own statements.

You don't have to use the CALL statement:
Test2 will also call subroutine test2

When you don't supply the CALL statement, you must leave out the
parenthesis.
So Call Routine(x,y,z) must be written as Routine x,y,x

Unlike normal SUB programs called with the GOSUB statement, the CALL
statement enables you to pass variables to a SUB routine that may be local to
the SUB.

See also
DECLARE , SUB , EXIT , FUNCTION , LOCAL

Example
Dim A As Byte , B As Byte 'dimension some variables
Declare Sub Test(b1 As Byte , Byval B2 As Byte)'declare the SUB program

Ver. 1.11.6.3 BASCOM-AVR Page 183 of 420

A = 65 'assign a value to variable A
Call Test(a , 5) 'call test with parameter A and
constant
Test A , 5 'alternative call
Print A 'now print the new value
End

Sub Test(b1 As Byte , Byval B2 As Byte) 'use the same variable names as 'the
declared one
Print B1 'print it
Print Bcd(b2)
B1 = 10 'reassign the variable
B2 = 15 'reassign the variable
End Sub

One important thing to notice is that you can change b2 but that the change
will not be reflected to the calling program!
Variable A is changed however.

This is the difference between the BYVAL and BYREF argument in the
DECLARE ration of the SUB program.
When you use BYVAL, this means that you will pass the argument by its
value. A copy of the variable is made and passed to the SUB program. So the
SUB program can use the value and modify it, but the change will not be
reflected to the calling parameter. It would be impossible too when you pass a
numeric constant for example.

If you do not specify BYVAL, BYREF will be used by default and you will pass
the address of the variable. So when you reassign B1 in the above example,
you are actually changing parameter A.

CHECKSUM

Action
Returns a checksum of a string.

Syntax
PRINT Checksum(var)
b = Checksum(var)

Remarks

Ver. 1.11.6.3 BASCOM-AVR Page 184 of 420

Var A string variable.
B A numeric variable that is assigned with the

checksum.

The checksum is computed by counting all the bytes of the string variable.
Checksums are often used with serial communication.

See also
CRC8

Example
Dim S As String * 10 'dim variable
S = "test" 'assign variable
Print Checksum(s) 'print value (192)
End

CHR

Action
Convert a numeric variable or a constant to a string with a length of 1
character. The character represents the ASCII value of the numeric value.

Syntax
PRINT CHR(var)
s = CHR(var)

Remarks
Var Numeric variable or numeric constant.
S A string variable.

Ver. 1.11.6.3 BASCOM-AVR Page 185 of 420

When you want to print a character to the screen or the LCD display,
you must convert it with the CHR() function.

When you use PRINT numvar, the value will be printed.
When you use PRINT Chr(numvar), the ASCII character itself will be printed.
The Chr() function is handy in combination with the LCD custom characters
where you ca redefine characters 0-7 of the ASCII table.

See also
ASC()

Example

Dim A As Byte 'dim variable
A = 65 'assign variable
Lcd A 'print value (65)
Lowerline
Lcd Hex(a) 'print hex value (41)
Lcd Chr(a) 'print ASCII character 65
(A)
End

CLS

Action
Clear the LCD display and set the cursor to home.

Syntax
CLS

Syntax for graphical LCD
CLS

Ver. 1.11.6.3 BASCOM-AVR Page 186 of 420

CLS TEXT
CLS GRAPH

Remarks
Clearing the LCD display does not clear the CG-RAM in which the custom
characters are stored.

For graphical LCD displays CLS will clear both the text and the graphical
display.

See also
$LCD , LCD , SHIFTLCD , SHIFTCURSOR , SHIFTLCD

Example
Cls 'Clear LCD display
Lcd "Hello" 'show this famous text
End

CLOCKDIVISION

Action
Will set the system clock division available in the MEGA chips.

Syntax
CLOCKDIVISON = var

Remarks
Var Variable or numeric constant that sets the clock division. Valid

values are from 2-129.
A value of 0 will disable the division.

Ver. 1.11.6.3 BASCOM-AVR Page 187 of 420

On the MEGA 103 and 603 the system clock frequency can be divided so you
can save power for instance. A value of 0 will disable the clock divider. The
divider can divide from 2 to 127. So the other valid values are from 2 - 127.
Some routines that rely on the system clock will not work proper anymore
when you use the divider. WAITMS for example will take twice the time when
you use a value of 2.

See also
POWERSAVE

Example
$BAUD = 2400

Clockdivision = 2

END

CLOSE
Action
Opens and closes a device.

Syntax
OPEN "device" for MODE As #channel
CLOSE #channel

Remarks
Device The default device is COM1 and you don't need to open a channel to use

INPUT/OUTPUT on this device.
With the implementation of the software UART, the compiler must know to
which pin/device you will send/receive the data.
So that is why the OPEN statement must be used. It tells the compiler
about the pin you use for the serial input or output and the baud rate you
want to use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stop bits.

The format for COM1 is : COM1:speed, where the speed is optional and

Ver. 1.11.6.3 BASCOM-AVR Page 188 of 420

will override the compiler settings for the speed.

The format for the sofware UART is: COMpin:speed,8,N,stop
bits[,INVERTED]
Where pin is the name of the PORT-pin.
Speed must be specified and stopbits can be 1 or 2.
An optional parameter ,INVERTED can be specified to use inverted RS-
232.
Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin
PORTD.1 for output with 9600 baud, 1 stop bit and with inverted RS-232.

MODE You can use BINARY or RANDOM for COM1, but for the software UART
pins, you must specify INPUT or OUTPUT.

Channel The number of the channel to open. Must be a positive constant >0.

The statements that support the device are PRINT , INPUT and INPUTHEX.

Every opened device must be closed using the CLOSE #channel statement.
Of course, you must use the same channel number.
The best place for the CLOSE statement is at the end of your program.

The INPUT statement in combination with the software UART, will not echo
characters back because there is no default associated pin for this.

See also
OPEN , PRINT

Example
'---
' (c) 2000 MCS Electronics
' OPEN.BAS
' demonstrates software UART
'---
$crystal = 10000000 'change to the value of
the XTAL you have installed

Dim B As Byte

'Optional you can fine tune the calculated bit delay
'Why would you want to do that?
'Because chips that have an internal oscillator may not
'run at the speed specified. This depends on the voltage, temp etc.
'You can either change $CRYSTAL or you can use
'BAUD #1,9610

'In this example file we use the DT006 from www.simmstick.com

Ver. 1.11.6.3 BASCOM-AVR Page 189 of 420

'This allows easy testing with the existing serial port
'The MAX232 is fitted for this example.
'Because we use the hardware UART pins we MAY NOT use the hardware UART
'The hardware UART is used when you use PRINT, INPUT or other related statements
'We will use the software UART.
Waitms 100

'open channel for output
Open "comd.1:19200,8,n,1" For Output As #1
Print #1 , "serial output"

'Now open a pin for input
Open "comd.0:19200,8,n,1" For Input As #2
'since there is no relation between the input and output pin
'there is NO ECHO while keys are typed
Print #1 , "Number"
'get a number
Input #2 , B
'print the number
Print #1 , B

'now loop until ESC is pressed
'With INKEY() we can check if there is data available
'To use it with the software UART you must provide the channel
Do
 'store in byte
 B = Inkey(#2)
 'when the value > 0 we got something
 If B > 0 Then
 Print #1 , Chr(b) 'print the character
 End If
Loop Until B = 27

Close #2
Close #1

'OPTIONAL you may use the HARDWARE UART
'The software UART will not work on the hardware UART pins
'so you must choose other pins
'use normal hardware UART for printing
'Print B

'When you dont want to use a level inverter such as the MAX-232
'You can specify ,INVERTED :
'Open "comd.0:300,8,n,1,inverted" For Input As #2
'Now the logic is inverted and there is no need for a level converter
'But the distance of the wires must be shorter with this
End

CONFIG
The CONFIG statement is used to configure the hardware devices.

CONFIG 1WIRE
CONFIG ADC
CONFIG CLOCK
CONFIG DEBOUNCE
CONFIG GRAPHLCD
CONFIG I2CDELAY

Ver. 1.11.6.3 BASCOM-AVR Page 190 of 420

CONFIG INTx
CONFIG KBD
CONFIG KEYBOARD
CONFIG LCD
CONFIG LCDBUS
CONFIG LCDMODE
CONFIG LCDPIN
CONFIG RC5
CONFIG PORT
CONFIG SERIALIN
CONFIG SERIALOUT
CONFIG SERVOS
CONFIG SDA
CONFIG SCL
CONFIG SPI
CONFIG TIMER0
CONFIG TIMER1
CONFIG TIMER2
CONFIG WATCHDOG
CONFIG WAITSUART

CONFIG 1WIRE

Action
Configure the pin to use for 1WIRE statements and override the compiler
setting.

Syntax
CONFIG 1WIRE = pin

Remarks

Ver. 1.11.6.3 BASCOM-AVR Page 191 of 420

Pin The port pin to use such as PORTB.0

The CONFIG 1WIRE statement, only overrides the compiler setting.
You can have only one pin for the 1WIRE statements because the idea is that
you can attach multiple 1WIRE devices to the 1WIRE bus.

See also
1WRESET , 1WREAD , 1WWRITE

Example
Config 1WIRE = PORTB.0 'PORTB.0 is used for the 1-wire bus

1WRESET 'reset the bus

CONFIG ADC

Action
Configures the A/D converter.

Syntax
CONFIG ADC = single, PRESCALER = AUTO, REFERENCE = opt

Remarks
ADC Running mode. May be SINGLE or FREE.
PRESCALER A numeric constant for the clock divider. Use AUTO to let the

compiler generate the best value depending on the XTAL
REFERENCE Some chips like the M163 have additional reference options.

Value may be OFF , AVCC or INTERNAL. See the data sheets for
the different modes.

Ver. 1.11.6.3 BASCOM-AVR Page 192 of 420

See also
NONE

ASM
The following ASM is generated
In _temp1,ADCSR ; get settings of ADC
Ori _temp1, XXX ; or with settings
Out ADCSR,_temp1 ; write back to ADC register

Example
Config Adc = Single , Prescaler = Auto, Reference = Internal

CONFIG CLOCK

Action
Configures the timer to be used for the TIME$ and DATE$ variables.

Syntax
CONFIG CLOCK = soft [, GOSUB = SECTIC]

Remarks
Soft The only option available now. I2C based clocks might be added.
Sectic This option allows to jump to a user routine with the label sectic.

Since the interrupt occurs every second you may handle various tasks in
the sectic label. It is important that you use the name SECTIC and that
you return with a RETURN statement from this label.
The usage of the optional SECTIC routine will use 30 bytes of the
hardware stack.

Ver. 1.11.6.3 BASCOM-AVR Page 193 of 420

When you use the CONFIG CLOCK directive the compiler will DIM the
following variables automatic : _sec , _min , _hour, _day , _month , _year
The variables TIME$ and DATE$ will also be dimensioned. These are special
variables since they are treated different. See TIME$ and DATE$.
The _sec, _min and other internal variables can be changed by the user too.
But of course changing their values will change the DATE$/TIME$ variables.
The compiler also creates an ISR that gets updates once per second. This
works only for the 8535, M163 and M103 and M603, or other AVR chips that
have a timer that can work in asynchrony mode.
For the 8535, timer2 is used. It can not be used my the user anymore!

See also
TIME$, DATE$

ASM
The following ASM routines are called from mcs.lib
_soft_clock. This is the ISR that gets called once per second.

Example
'--
' MEGACLOCK.BAS
' (c) 2000-2001 MCS Electronics
'--
'This example shows the new TIME$ and DATE$ reserved variables
'With the 8535 and timer2 or the Mega103 and TIMER0 you can
'easily implement a clock by attaching a 32.768 KHz xtal to the timer
'And of course some BASCOM code

'This example is written for the STK300 with M103
Enable Interrupts

'[configure LCD]
$lcd = &HC000 'address for E and RS
$lcdrs = &H8000 'address for only E
Config Lcd = 20 * 4 'nice display from bg micro
Config Lcdbus = 4 'we run it in bus mode and I hooked up
only db4-db7
Config Lcdmode = Bus 'tell about the bus mode

'[now init the clock]
Config Clock = Soft 'this is how simple it is
'The above statement will bind in an ISR so you can not use the TIMER anymore!
'For the M103 in this case it means that TIMER0 can not be used by the user anymore

'assign the date to the reserved date$
'The format is MM/DD/YY
Date$ = "11/11/00"

Ver. 1.11.6.3 BASCOM-AVR Page 194 of 420

'assign the time, format in hh:mm:ss military format(24 hours)
'You may not use 1:2:3 !! adding support for this would mean overhead
'But of course you can alter the library routines used

Time$ = "02:20:00"

'clear the LCD display
Cls

Do
 Home 'cursor home
 Lcd Date$; " " ; Time$ 'show the date and time
Loop

'The clock routine does use the following internal variables:
'_day , _month, _year , _sec, _hour, _min
'These are all bytes. You can assign or use them directly
_day = 1
'For the _year variable only the year is stored, not the century
End

CONFIG DEBOUNCE
Action
Configures the delay time for the DEBOUNCE statement.

Syntax
CONFIG DEBOUNCE = time

Remarks
Time A numeric constant which specifies the delay time in mS.

When debounce time is not configured, 25 mS will be used as a default.

See also
DEBOUNCE

Example
'---

Ver. 1.11.6.3 BASCOM-AVR Page 195 of 420

' DEBOUN.BAS
' Demonstrates DEBOUNCE
'---
Config Debounce = 30 'when the config
statement is not used a default of 25mS will be used

 'Debounce Pind.0 , 1 , Pr 'try this for branching when high(1)
 Debounce Pind.0 , 0 , Pr , Sub
 Debounce Pind.0 , 0 , Pr , Sub
 ' ^----- label to branch to
 ' ^---------- Branch when P1.0 goes low(0)
 ' ^---------------- Examine P1.0

 'When Pind.0 goes low jump to subroutine Pr
 'Pind.0 must go high again before it jumps again
 'to the label Pr when Pind.0 is low

 Debounce Pind.0 , 1 , Pr 'no branch
 Debounce Pind.0 , 1 , Pr 'will result in a return
without gosub
End

Pr:
 Print "PIND.0 was/is low"
Return

CONFIG GRAPHLCD
Action
Configures the Graphical LCD display.

Syntax
Config GRAPHLCD = type , PORT = mode, CE = pin , CD = cd , COLS = 30

Remarks
Type This must be 240 * 64. Other types may be supported later.
Dataport This is the name of the port that is used to put the data on the LCD data

pins db0-db7.
PORTA for example.

Controlport This is the name of the port that is used to control the LCD control pins.
PORTC for example

Ce The pin number that is used to enable the chip on the LCD.
Cd The pin number that is used to control the CD pin of the display.
WR The pin number that is used to control the /WR pin of the display.
RD The pin number that is used to control the /RD pin of the display.

Ver. 1.11.6.3 BASCOM-AVR Page 196 of 420

FS The pin number that is used to control the FS pin of the display.
RESET The pin number that is used to control the RESET pin of the display.
Cols The number of columns for use as text display. The current code is written

for 30 columns only.

This is a first implementation for Graphic support. It is based on the
T6963C chip that is used in many displays. At the moment there is
only support for pin mode. That is, the LCD is controlled by changing
logic levels on the pins.
Memory mapped or bus mode will be added later. But pin mode can
be used with any micro so that is why this is first implemented.

The following connections were used:
PORTA.0 to PORTA.7 to DB0-DB7 of the LCD
PORTC.5 to FS, font select of LCD
PORTC.2 to CE, chip enable of LCD
PORTC.3 to CD, code/data select of LCD
PORTC.0 to WR of LCD, write
PORTC.1 to RD of LCD, read
PORTC.4 to RESET of LCD, reset LCD

The LCD used from www.conrad.de needs a negative voltage for the
contrast.
Two 9V batteries were used with a pot meter.

The T6963C displays have both a graphical area and a text area.
They can be used together. The routines use the XOR mode to
display both text and graphics layered over each other.

The statements that can be used with the graphical LCD are :
CLS, will clear the graphic display and the text display
CLS GRAPH will clear only the graphic part of the display
CLS TEXT will only clear the text part of the display

LOCATE row,column Will place the cursor at the specified row and
column
The row may vary from 1 to 8 and the column from 1 to 30.

Ver. 1.11.6.3 BASCOM-AVR Page 197 of 420

CURSOR ON/OFF BLINK/NOBLINK can be used the same way as
for text displays.

LCD can also be the same way as for text displays.

New are:
SHOWPIC X, Y , Label where X and Y are the column and row and
Label is the label where the picture info is placed.

PSET X, Y , color Will set or reset a pixel. X can range from 0-239
and Y from 9-63. When color is 0 the pixel will turned off. When it is 1
the pixel will be set on.

$BGF "file.bgf" 'inserts a BGF file at the current location

See also
SHOWPIC , PSET , $BGF

Example

'---
' (c) 2001 MCS Electronics
' T6963C graphic display support demo
'---

'The connections of the LCD used in this demo
'LCD pin connected to
' 1 GND GND
 '2 GND GND
 '3 +5V +5V
 '4 -9V -9V potmeter
 '5 /WR PORTC.0
 '6 /RD PORTC.1
 '7 /CE PORTC.2
 '8 C/D PORTC.3
 '9 NC not conneted
 '10 RESET PORTC.4
 '11-18 D0-D7 PA
 '19 FS PORTC.5
 '20 NC not connected

'First we define that we use a graphic LCD
' Only 240*64 supported yet
Config Graphlcd = 240 * 64 , Dataport = Porta , Controlport = Portc , Ce = 2 , Cd =
3 , Wr = 0 , Rd = 1 , Reset = 4 , Fs = 5
'The dataport is the portname that is connected to the data lines of the LCD
'The controlport is the portname which pins are used to control the lcd
'CE, CD etc. are the pin number of the CONTROLPORT.
' For example CE =2 because it is connected to PORTC.2

'Dim variables (y not used)
Dim X As Byte , Y As Byte

Ver. 1.11.6.3 BASCOM-AVR Page 198 of 420

'Clear the screen will both clear text and graph display
Cls
'Other options are :
' CLS TEXT to clear only the text display
' CLS GRAPH to clear only the graphical part

'locate works like the normal LCD locate statement
' LOCATE LINE,COLUMN LINE can be 1-8 and column 0-30
Locate 1 , 1

'Show some text
Lcd "MCS Electronics"
'And some othe text on line 2
Locate 2 , 1 : Lcd "T6963c support"

'wait 1 sec
Wait 1

' draw a line using PSET X,Y, ON/OFF
' PSET on.off param is 0 to clear a pixel and any other value to turn it on
For X = 0 To 140
 Pset X , 20 , 255 ' set the pixel
Next

Wait 1

'Now it is time to show a picture
'SHOWPIC X,Y,label
'The label points to a label that holds the image data
Showpic 0 , 0 , Plaatje

Wait 1
Cls Text ' clear the text
End

'This label holds the mage data
Plaatje:
'$BGF will put the bitmap into the program at this location
$bgf "mcs.bgf"

'You could insert other picture data here

CONFIG I2CDELAY

Action
Compiler directive that overrides the internal I2C delay routine.

Syntax
CONFIG I2CDELAY = value

Remarks
value A numeric value in the range of 1-255.

Ver. 1.11.6.3 BASCOM-AVR Page 199 of 420

A higher value means a slower I2C clock.

For the I2C routines the clock rate is calculated depending on the used
crystal. In order to make it work for all I2C devices the slow mode is used.
When you have faster I2C devices you can specify a low value.

See also
CONFIG SCL , CONFIG SDA

Example
CONFIG SDA = PORTB.7 'PORTB.7 is the SDA line

CONFIG I2CDELAY = 5

See I2C example for more details.

'--
' (c) 1999-2000 MCS Electronics
'--
' file: I2C.BAS
' demo: I2CSEND and I2CRECEIVE
'--
Declare Sub Write_eeprom(byval Adres As Byte , Byval Value As Byte)
Declare Sub Read_eeprom(byval Adres As Byte , Value As Byte)

Const Addressw = 174 'slave write address
Const Addressr = 175 'slave read address

Dim B1 As Byte , Adres As Byte , Value As Byte 'dim byte

Call Write_eeprom(1 , 3) 'write value of three
to address 1 of EEPROM

Call Read_eeprom(1 , Value) : Print Value 'read it back
Call Read_eeprom(5 , Value) : Print Value 'again for address 5

'-------- now write to a PCF8474 I/O expander -------
I2csend &H40 , 255 'all outputs high
I2creceive &H40 , B1 'retrieve input
Print "Received data " ; B1 'print it
End

Rem Note That The Slaveaddress Is Adjusted Automaticly With I2csend & I2creceive
Rem This Means You Can Specify The Baseaddress Of The Chip.

'sample of writing a byte to EEPROM AT2404
Sub Write_eeprom(byval Adres As Byte , Byval Value As Byte)
 I2cstart 'start condition
 I2cwbyte Addressw 'slave address
 I2cwbyte Adres 'asdress of EEPROM
 I2cwbyte Value 'value to write
 I2cstop 'stop condition
 Waitms 10 'wait for 10
milliseconds
End Sub

'sample of reading a byte from EEPROM AT2404
Sub Read_eeprom(byval Adres As Byte , Value As Byte)
 I2cstart 'generate start
 I2cwbyte Addressw 'slave adsress

Ver. 1.11.6.3 BASCOM-AVR Page 200 of 420

 I2cwbyte Adres 'address of EEPROM
 I2cstart 'repeated start
 I2cwbyte Addressr 'slave address (read)
 I2crbyte Value , Nack 'read byte
 I2cstop 'generate stop
End Sub

CONFIG INTx

Action
Configures the way the interrupts 0,1 and 4-7 will be triggered.

Syntax
CONFIG INTx = state
Where X can be 0,1 and 4 to 7 in the MEGA chips.

Remarks
state LOW LEVEL to generate an interrupt while the pin is held low.

Holding the pin low will generate an interrupt over and over
again.

FALLING to generate an interrupt on the falling edge.

RISING to generate an interrupt on the rising edge..

The MEGA has also INT0-INT3. These are always low level triggered so there
is no need /possibility for configuration.
The number of interrupt pins depend on the used chip. Most chips only have
int0 and int1.

Example
'--

'Sample for the MEGA103

Config INT4 = LOW LEVEL

End

Ver. 1.11.6.3 BASCOM-AVR Page 201 of 420

CONFIG KBD

Action
Configure the GETKBD() function and tell which port to use.

Syntax
CONFIG KBD = PORTx , DEBOUNCE = value

Remarks
PORTx The name of the PORT to use such as PORTB or PORTD.
DEBOUNCE By default the debounce value is 20. A higher value might be needed.

The maximum is 255.

The GETKBD() function can be used to read the pressed key from a matrix
keypad attached to a port of the uP.
You can define the port with the CONFIG KBD statement.

See also
GETKBD

CONFIG KEYBOARD

Action
Configure the GETATKBD() function and tell which port pins to use.

Syntax
CONFIG KEYBOARD = PINX.y , DATA = PINX.y , KEYDATA = table

Ver. 1.11.6.3 BASCOM-AVR Page 202 of 420

Remarks
KEYBOARD The PIN that serves as the CLOCK input.
DATA The PIN that serves as the DATA input.
KEYDATA The label where the key translation can be found.

The AT keyboard returns scan codes instead of normal ASCII
codes. So a translation table s needed to convert the keys.
BASCOM allows the use of shifted keys too. Special keys like
function keys are not supported.

The AT keyboard can be connected with only 4 wires : clock,data, gnd and
vcc.
Some info is displayed below. This is copied from an Atmel datasheet.
The INT0 or INT1 shown can be in fact any pin that can serve as an INPUT
pin.
The application note from Atmel works in interrupt mode. For BASCOM I
rewrote the code so that no interrupt is needed/used.

Ver. 1.11.6.3 BASCOM-AVR Page 203 of 420

See also
GETATKBD

CONFIG LCD

Action
Configure the LCD display and override the compiler setting.

Syntax
CONFIG LCD = LCDtype

Ver. 1.11.6.3 BASCOM-AVR Page 204 of 420

Remarks
LCDtype The type of LCD display used. This can be :

40 * 4,16 * 1, 16 * 2, 16 * 4, 16 * 4, 20 * 2 or 20 * 4 or 16 * 1a
Default 16 * 2 is assumed.

When you have a 16 * 2 display, you don't have to use this statement.
The 16 * 1a is special. It is used for 2 * 8 displays that have the address of
line 2, starting at location &H8.

Example
Config Lcd = 40 * 4
Lcd "Hello" 'display on LCD
Fourthline 'select line 4
Lcd "4" 'display 4
End

CONFIG LCDBUS

Action
Configures the LCD data bus and overrides the compiler setting.

Syntax
CONFIG LCDBUS = constant

Remarks
Constant 4 for 4-bit operation, 8 for 8-bit mode (default)

Use this statement together with the $LCD = address statement.
When you use the LCD display in the bus mode the default is to connect all

Ver. 1.11.6.3 BASCOM-AVR Page 205 of 420

the data lines. With the 4-bit mode, you only have to connect data lines d7-d4.

See also
CONFIG LCD

Example
$lcd = &HC000 'address of enable and RS
signal
$lcdrs = &H800 'address of enable signal
Config Lcdbus = 4 '4 bit mode
Lcd "hello"

CONFIG LCDMODE

Action
Configures the LCD operation mode and overrides the compiler setting.

Syntax
CONFIG LCDMODE = type

Remarks
Type PORT will drive the LCD in 4-bit port mode and is the default.

In PORT mode you can choose different PIN's from different PORT's to
connect to the upper 4 data lines of the LCD display. The RS and E can
also be connected to a user selectable pin. This is very flexible since you
can use pins that are not used by your design and makes the board
layout simple. On the other hand, more software is necessary to drive the
pins.

BUS will drive the LCD in bus mode and in this mode is meant when you
have external RAM and so have an address and data bus on your
system. The RS and E line of the LCD display can be connected to an

Ver. 1.11.6.3 BASCOM-AVR Page 206 of 420

address decoder. Simply writing to an external memory location select
the LCD and the data is sent to the LCD display. This means the data-
lines of the LCD display are fixed to the data-bus lines.

Use $LCD = address and $LCDRS = address, to specify the addresses
that will enable the E and RS lines.

See also
CONFIG LCD , $LCD , $LCDRS

Example
Config LCDMODE = PORT 'the report will show the settings

Config LCDBUS = 4 '4 bit mode

LCD "hello"

CONFIG LCDPIN

Action
Override the LCD-PIN select options.

Syntax
CONFIG LCDPIN = PIN , DB4= PN,DB5=PN, DB6=PN, DB7=PN, E=PN,
RS=PN

Remarks
PN The name of the PORT pin such as PORTB.2 for example.
DUM Actually a dummy you can leave out as long as you don't forget to

include the = sign.

You can override the PIN selection from the Compiler Settings with this
statement, so a second configuration lets you not choose more pins for a
second LCD display.

Ver. 1.11.6.3 BASCOM-AVR Page 207 of 420

See also
CONFIG LCD

Example
CONFIG LCDPIN = PIN ,DB4= PORTB.1,DB5=PORTB.2,DB6=PORTB.3,
DB7=PORTB.4,E=PORTB.5,RS=PORTB.6

The above example must be typed on one line.

CONFIG PORT

Action
Sets the port or a port pin to the right data direction.

Syntax
CONFIG PORTx = state
CONFIG PINx.y = state

Remarks
state A constant that can be INPUT or OUTPUT.

INPUT will set the data direction register to input for port X.
OUTPUT will set the data direction to output for port X.
You can also use a number for state. &B0001111, will set the
upper nibble to input and the lower nibble to output.

You can also set one port pin with the CONFIG PIN = state,
statement.
Again, you can use INPUT, OUTPUT or a number. In this case
the number can be only zero or one.

state : Constant.

The best way to set the data direction for more than 1 pin, is to use the
CONFIG PORT, statement and not multiple lines with CONFIG PIN
statements.

Ver. 1.11.6.3 BASCOM-AVR Page 208 of 420

Example
'--
' (c) 1999-2000 MCS Electronics
'--
' file: PORT.BAS
' demo: PortB and PortD
'--
Dim A As Byte , Count As Byte

'configure PORT D for input mode
Config Portd = Input

'reading the PORT, will read the latch, that is the value
'you have written to the PORT.
'This is not the same as reading the logical values on the pins!
'When you want to know the logical state of the attached hardware,
'you MUST use the PIN register.
A = Pind

'a port or SFR can be treated as a byte
A = A And Portd

Print A 'print it

Bitwait Pind.7 , Reset 'wait until bit is low

'We will use port B for output
Config Portb = Output

'assign value
Portb = 10 'set port B to 10
Portb = Portb And 2

Set Portb.0 'set bit 0 of port B to
1

Incr Portb

'Now a light show on the STK200
Count = 0
Do
 Incr Count
 Portb = 1
 For A = 1 To 8
 Rotate Portb , Left 'rotate bits left
 Wait 1
 Next
 'the following 2 lines do the same as the previous loop
 'but there is no delay
' Portb = 1
' Rotate Portb , Left , 8
Loop Until Count = 10
Print "Ready"

'Again, note that the AVR port pins have a data direction register
'when you want to use a pin as an input it must be set low first
'you can do this by writing zeros to the DDRx:
'DDRB =&B11110000 'this will set portb1.0,portb.1,portb.2 and portb.3 to use as
inputs.

'So : when you want to use a pin as an input set it low first in the DDRx!
' and read with PINx
' and when you want to use the pin as output, write a 1 first
' and write the value to PORTx

End

Ver. 1.11.6.3 BASCOM-AVR Page 209 of 420

CONFIG RC5
Action
Overrides the RC5 pin assignment from the Option Compiler Settings.

Syntax
CONFIG RC5 = pin [,TIMER=2]

Remarks
Pin The port pin to which the RC5 receiver is connected.
TIMER Must be 2. The micro must have a timer2 of course when you

want to use this option. This additional parameter will cause
that TIMER2 will be used instead of the default TIMER0.

When you use different pins in different projects, you can use this statement
to override the Options Compiler setting for the RC5 pin. This way you will
remember which pin you used because it is in your code and you do not have
to change the settings from the options. In BASCOM-AVR the settings are
also stored in the project.CFG file.

See also
GETRC5

Example
CONFIG RC5 = PIND.5 'PORTD.5 is the RC5 input line

CONFIG SCL

Action
Overrides the SCL pin assignment from the Option Compiler Settings.

Ver. 1.11.6.3 BASCOM-AVR Page 210 of 420

Syntax
CONFIG SCL = pin

Remarks
Pin The port pin to which the I2C-SCL line is connected.

When you use different pins in different projects, you can use this statement
to override the Options Compiler setting for the SCL pin. This way you will
remember which pin you used because it is in your code and you do not have
to change the settings from the options. Of course BASCOM-AVR also stores
the settings in a project.CFG file.

See also
CONFIG SDA , CONFIG I2CDELAY

Example
CONFIG SCL = PORTB.5 'PORTB.5 is the SCL line

CONFIG SDA

Action
Overrides the SDA pin assignment from the Option Compiler Settings.

Syntax
CONFIG SDA = pin

Remarks
Pin The port pin to which the I2C-SDA line is connected.

Ver. 1.11.6.3 BASCOM-AVR Page 211 of 420

When you use different pins in different projects, you can use this statement
to override the Options Compiler setting for the SDA pin. This way you will
remember which pin you used because it is in your code and you do not have
to change the settings from the options. In BASCOM-AVR the settings are
also stored in the project.CFG file.

See also
CONFIG SCL , CONFIG I2CDELAY

Example
CONFIG SDA = PORTB.7 'PORTB.7 is the SDA line

See I2C example for more details.

CONFIG SERIALIN

Action
Configures the hardware UART to use a buffer for input

Syntax
CONFIG SERIALIN = BUFFERED , SIZE = size

Remarks
size A numeric constant that specifies how large the input buffer should be.

The space is taken from the SRAM.

The following internal variables will be generated :
_WPOINTER BYTE , a pointer to the location of the buffer that was written
last
_RPOINTER BYTE , a pointer to the location of the buffer that was read last
_WCOUNTER BYTE , a counter that holds the number of chars in the buffer
calling _recChar0 will decrease this var , when a char is received it will be

Ver. 1.11.6.3 BASCOM-AVR Page 212 of 420

increased
_RS232INBUF STRING , the actual buffer with the size of SIZE

ASM
Routines called from MCS.LIB :
_GotChar. This is an ISR that gets called when ever a character is received.
When there is no room for the data it will not be stored.
So the buffer must be emptied peridic by reading from the serial port using the
normal statements like INKEY() and INPUT.

Since URXC interrupt is used by _GotChar, you can not use this interrupt
anymore. Unless you modify the _gotchar routine of course.

See also
CONFIG SERIALOUT

Example
'--
' RS232BUFFER.BAS
' (c) 2000, MCS Electronics
' This example shows the difference between normal and buffered
' serial INPUT
'--
$crystal = 4000000
$baud = 9600

'first compile and run this program with the line below remarked
Config Serialin = Buffered , Size = 20

'dim a variable
Dim Name As String * 10

'the enabling of interrupts is not needed for the normal serial mode
'So the line below must be remarked to for the first test
Enable Interrupts

Print "Start"
Do
 'get a char from the UART
 Name = Inkey()

 If Name <> "" Then 'was there a char?
 Print Name 'print it
 End If

 Wait 1 'wait 1 second
Loop

'You will see that when you slowly enter characters in the terminal emulator
'they will be received/displayed.
'When you enter them fast you will see that you loose some chars

'NOW remove the remarks from line 11 and 18
'and compile and program and run again
'This time the chars are received by an interrupt routine and are
'stored in a buffer. This way you will not loose characters providing that

Ver. 1.11.6.3 BASCOM-AVR Page 213 of 420

'you empty the buffer
'So when you fast type abcdefg, they will be printed after each other with the
'1 second delay

'Using the CONFIG SERIAL=BUFFERED, SIZE = 10 for example will
'use some SRAM memory
'The following internal variables will be generated :
'_WPOINTER BYTE , a pointer to the location of the buffer that was written last
'_RPOINTER BYTE , a pointer to the location of the buffer that was read last
'_WCOUNTER BYTE , a counter that holds the number of chars in the buffer
'calling _recChar0 will decrease this var , when a char is received it will be
increased
'_RS232INBUF STRING , the actual buffer with the size of SIZE
'---

CONFIG SERIALOUT

Action
Configures the hardware UART to use a buffer for output

Syntax
CONFIG SERIALOUT = BUFFERED , SIZE = size

Remarks
size A numeric constant that specifies how large the output buffer should be.

The space is taken from the SRAM.

The following internal variables will be used when you use CONFIG
SERIALOUT
_wocounter , byte will hold the number of characters waiting in the buffer
_wrpointer , byte will point to the last read position in the buffer
_wopointer , byte will point to the last written location in the buffer
_rs232Outbuf string with the size of config SIZE parameter

ASM
Routines called from MCS.LIB :
_CHECKSENDCHAR. This is an ISR that gets called when ever the
trasmission buffer is empty.

Since URRE interrupt is used , you can not use this interrupt anymore. Unless
you modify the _CheckSendChar routine of course.

Ver. 1.11.6.3 BASCOM-AVR Page 214 of 420

When you use the PRINT statement to send data to the serial port, the UDRE
interrupt will be enabled. And so the _CheckSendChar routine will send the
data from the buffer. When there is no more data, the interrupt will be
disabled.

See also
CONFIG SERIALIN

Example
'--
' RS232BUFFEROUT.BAS
' (c) 2000 MCS ELectronics
'Sample demonstrates how to use a serial output buffer
'--
$baud = 9600
$crystal = 4000000

'setup to use a serial output buffer
'and reserve 20 bytes for the buffer
Config Serialout = Buffered , Size = 20

'It is important since UDRE interrupt is used that you enable the interrupts
Enable Interrupts
Print "Hello world"
Do
 Wait 1
 'notice that using the UDRE interrupt will slown down execution of waiting loops like
waitms
 Print "test" ; _wrpointer
Loop
End

'The following internal variables will be used when you use CONFIG SERIALOUT
'_wocounter , byte will hold the number of characters waiting in the buffer
'_wrpointer , byte will point to the last read position in the buffer
'_wopointer , byte will point to the last written location in the buffer
'_rs232Outbuf string with the size of config SIZE paramter

CONFIG SERVOS

Action
Configures how much servo’s will be controlled.

Syntax
CONFIG SERVOS = X , Servo1 = Portb.0 , Servo2 = Portb.1 , Reload = rl

Ver. 1.11.6.3 BASCOM-AVR Page 215 of 420

Remarks
Servo’s need a variable pulse in order to operate. The CONFIG SERVOS
directive will se up a byte array with the servo pulse width values and will
initialize an ISR that uses TIMER0.

X The number of servo’s you want to control. Each used servo will use

one byte of SRAM.
PORT The port pin the servo is attached too.
RL The reload value for the ISR in uS.

When you use for example :
Config Servos = 2 , Servo1 = Portb.0 , Servo2 = Portb.1 , Reload = 100
The internal ISR will execute every 100 uS.
An arrays named SERVO() will be created and it can hold 2 bytes : servo(1)
and servo(2).
By setting the value of the servo() array you control how long the positive
pulse will last. After it has reached this value it will be reset to 0.

The PORT pins specified must be set to work as an output pin by the user.
CONFIG PINB.0 = OUTPUT
Will set a pin to output mode.

Resources used
TIMER0 is used to create the ISR.

ASM
NONE

Example
'--

' (c) 2001 MCS Electronics
' servo.bas demonstrates the
SERVO option
'--

Ver. 1.11.6.3 BASCOM-AVR Page 216 of 420

'Servo's need a pulse in order to operate
'with the config statement CONFIG SERVOS we can specify
how many servo's we
'will use and which port pins are used
'A maximum of 16 servos might be used
'The SERVO statements use one byte for an interrupt
counter and the TIMER0
'This means that you can not use TIMER0 anymore
'The reload value specifies the interval of the timer
in uS
Config Servos = 2 , Servo1 = Portb.0 , Servo2 = Portb.1
, Reload = 100
'we use 2 servos with 100 uS resolution

'we must configure the port pins used to act as output
Config Portb = Output

'finally we must turn on the global interrupt
Enable Interrupts

'the servo() array is created automatic. You can used
it to set the
'time the servo must be on
Servo(1) = 10
'1000 uS on
Servo(2) = 20
' 2000 uS on

Dim I As Byte
Do
 For I = 1 To 20
 Servo(1) = I
 Waitms 1000
 Next

 For I = 20 To 1 Step -1
 Servo(1) = I
 Waitms 1000
 Next
Loop
End

CONFIG SPI
Action

Ver. 1.11.6.3 BASCOM-AVR Page 217 of 420

Configures the SPI related statements.

Syntax for software SPI
CONFIG SPI = SOFT, DIN = PIN, DOUT = PIN , SS = PIN, CLOCK = PIN

Syntax for hardware SPI
CONFIG SPI = HARD, DATA ORDER = LSB|MSB , MASTER = YES|NO ,
POLARITY = HIGH|LOW , PHASE = 0|1, CLOCKRATE = 4|16|64|128

Remarks
SPI SOFT for software emulation of SPI, this lets you choose the PINS to

use.

HARD for the internal SPI hardware, that will use fixed pins.

DIN Data input or MISO. Pin is the pin number to use such as PINB.0
DOUT Data output or MOSI. Pin is the pin number to use such as PORTB.1
SS Slave Select. Pin is the pin number to use such as PORTB.2
CLOCK Clock. Pin is the pin number to use such as PORTB.3
DATA ORDER Selects if MSB or LSB is transferred first.
MASTER Selects if the SPI is run in master or slave mode.
POLARITY Select HIGH to make the CLOCK line high while the SPI is idle. LOW

will make clock LOW while idle.
PHASE Refer to a data sheet to learn about the different settings in

combination with polarity.
CLOCKRATE The clock rate selects the division of the of the oscillator frequency

that serves as the SPI clock. So with 4 you will have a clockrate of
4.000000 / 4 = 1 MHz , when a 4 MHZ XTAL is used.

The default setting for hardware SPI when set from the Compiler, Options,
SPI menu is MSB first, POLARITY = HIGH, MASTER = YES, PHASE = 0,
CLOCKRATE = 4

When you use CONFIG SPI = HARD alone without the other parameters, the
SPI will only be enabled. It will work in slave mode then with CPOL =0 and

Ver. 1.11.6.3 BASCOM-AVR Page 218 of 420

CPH=0.

In hardware mode the SPIINIT statement will set the SPI pins to :
sbi DDRB,7 ; SCK output
cbi DDRB,6 ; MISO input
sbi DDRB,5 ; MOSI output

In softmode the SPIINIT statement will set the SPI pins for example to :
sbi PORTB,5 ;set latch bit hi (inactive)SS
sbi DDRB,5 ;make it an output SS
cbi PORTB,4 ;set clk line lo
sbi DDRB,4 ;make it an output
cbi PORTB,6 ;set data-out lo MOSI
sbi DDRB,6 ;make it an output MOSI
cbi DDRB,7 ;MISO input
Ret

See also
SPIIN , SPIOUT , SPIINIT

Example
Config SPI = SOFT, DIN = PINB.0 , DOUT = PORTB.1, SS = PORTB.2, CLOCK
= PORTB.3

Dim var As Byte

SPIINIT 'Init SPI state and pins.

SPIOUT var , 1 'send 1 byte

CONFIG TIMER0

Action
Configure TIMER0.

Ver. 1.11.6.3 BASCOM-AVR Page 219 of 420

Syntax
CONFIG TIMER0 = COUNTER , EDGE=RISING/FALLING
CONFIG TIMER0 = TIMER , PRESCALE= 1|8|64|256|1024

Remarks
TIMER0 is a 8 bit counter. See the hardware description of TIMER0.

When configured as a COUNTER:
EDGE You can select whether the TIMER will count on the falling or rising edge.

When configured as a TIMER:
PRESCALE The TIMER is connected to the system clock in this case. You can

select the division of the system clock with this parameter.
Valid values are 1 , 8, 64, 256 or 1024

When you use the CONFIG TIMER0 statement, the mode is stored by the
compiler and the TCCRO register is set.

When you use the STOP TIMER0 statement, the TIMER is stopped.
When you use the START TIMER0 statement, the TIMER TCCR0 register is
loaded with the last value that was configured with the CONFIG TIMER0
statement.

So before using the START and STOP TIMER0 statements, use the CONFIG
statement first.

Example
'---
' TIMER0.BAS
' example that shows how to use TIMER0 related statements
'---

'First you must configure the timer to operate as a counter or as a timer
'Lets configure it as a COUNTER now
'You must also specify if it will count on a rising or falling edge

Config Timer0 = Counter , Edge = Rising

Ver. 1.11.6.3 BASCOM-AVR Page 220 of 420

'Config Timer0 = Counter , Edge = falling
'unremark the line aboven to use timer0 to count on falling edge

'To get/set the value from the timer access the timer/counter register
'lets reset it to 0
Tcnt0 = 0

Do
 Print Tcnt0
Loop Until Tcnt0 >= 10
'when 10 pulses are count the loop is exited
'or use the special variable TIMER0
Timer0 = 0

'Now configire it as a TIMER
'The TIMER can have the systemclock as an input or the systemclock divided
'by 8,64,256 or 1024
'The prescale parameter excepts 1,8,64,256 or 1024
Config Timer0 = Timer , Prescale = 1

'The TIMER is started now automaticly
'You can STOP the timer with the following statement :
Stop Timer0

'Now the timer is stopped
'To START it again in the last configured mode, use :
Start Timer0

'Again you can access the value with the tcnt0 register
Print Tcnt0
'or
Print Timer0
'when the timer overflows, a flag named TOV0 in register TIFR is set
'You can use this to execute an ISR
'To reset the flag manual in non ISR mode you must write a 1 to the bit position
'in TIFR:
Set Tifr.1

'The following code shows how to use the TIMER0 in interrupt mode
'The code is block remarked with '(en ')

'(

'Configute the timer to use the clock divided by 1024
Config Timer0 = Timer , Prescale = 1024

'Define the ISR handler
On Ovf0 Tim0_isr
'you may also use TIMER0 for OVF0, it is the same

Enable Timer0 ' enable the timer
interrupt
Enable Interrupts 'allow interrupts to
occur
Do
 'your program goes here
Loop

'the following code is executed when the timer rolls over
Tim0_isr:
 Print "*";
Return

')

End

CONFIG TIMER1

Action

Ver. 1.11.6.3 BASCOM-AVR Page 221 of 420

Configure TIMER1.

Syntax
CONFIG TIMER1 = COUNTER | TIMER | PWM ,
EDGE=RISING | FALLING , PRESCALE= 1|8|64|256|1024 ,
NOICE CANCEL=0 |1, CAPTURE EDGE = RISING | FALLING ,
COMPARE A = CLEAR | SET | TOGGLE I DISCONNECT ,
COMPARE B = CLEAR | SET | TOGGLE I DISCONNECT ,
PWM = 8 | 9 10 ,
COMPARE A PWM = CLEAR UP| CLEAR DOWN | DISCONNECT
COMPARE B PWM = CLEAR UP| CLEAR DOWN | DISCONNECT

Remarks
The TIMER1 is a 16 bit counter. See the hardware description of TIMER1.
It depends on the chip if COMPARE B is available or not.

The syntax shown above must be on one line. Not all the options need to be
selected.

Here is the effect of the various options.
EDGE You can select whether the TIMER will count on the falling or

rising edge. Only for COUNTER mode.
CAPTURE EDGE You can choose to capture the TIMER registers to the INPUT

CAPTURE registers
With the CAPTURE EDGE = FALLING/RISING, you can
specify to capture on the falling or rising edge of pin ICP

NOICE CANCELING To allow noise canceling you can provide a value of 1.
PRESCALE The TIMER is connected to the system clock in this case. You

can select the division of the system clock with this parameter.
Valid values are 1 , 8, 64, 256 or 1024

The TIMER1 also has two compare registers A and B

Ver. 1.11.6.3 BASCOM-AVR Page 222 of 420

When the timer value matches a compare register, an action can be
performed
COMPARE A The action can be:

SET will set the OC1X pin
CLEAR will clear the OC1X pin
TOGGLE will toggle the OC1X pin
DISCONNECT will disconnect the TIMER from output pin OC1X

And the TIMER can be used in PWM mode
You have the choice between 8, 9 or 10 bit PWM mode
Also you can specify if the counter must count UP or down after a match
to the compare registers
Note that there are two compare registers A and B

PWM Can be 8, 9 or 10.
COMPARE A PWM PWM compare mode. Can be CLEAR UP or CLEAR DOWN

Using COMPARE A, COMPARE B, COMPARE A PWM or COMPARE B
PWM will set the corresponding pin for output. When this is not wanted you
can use the alternative NO_OUTPUT version that will not alter the output pin.
For example : COMPARE A NO_OUTPUT , COMPARE A PWM
NO_OUTPUT

Example
'---
' TIMER1.BAS for the 8515

'---

Dim W As Word

'The TIMER1 is a versatile 16 bit TIMER.
'This example shows how to configure the TIMER

'First like TIMER0 , it can be set to act as a TIMER or COUNTER
'Lets configure it as a TIMER that means that it will count and that
'the input is provided by the internal clock.
'The internal clock can be divided by 1,8,64,256 or 1024
Config Timer1 = Timer , Prescale = 1024

'You can read or write to the timer with the COUNTER1 or TIMER1 variable
W = Timer1
Timer1 = W

'To use it as a COUNTER, you can choose on which edge it is triggered
Config Timer1 = Counter , Edge = Falling
'Config Timer1 = Counter , Edge = Rising

'Also you can choose to capture the TIMER registers to the INPUT CAPTURE registers

Ver. 1.11.6.3 BASCOM-AVR Page 223 of 420

'With the CAPTURE EDGE = , you can specify to capture on the falling or rising edge of
pin ICP
Config Timer1 = Counter , Edge = Falling , Capture Edge = Falling
'Config Timer1 = Counter , Edge = Falling , Capture Edge = Rising

'To allow noise canceling you can also provide :
Config Timer1 = Counter , Edge = Falling , Capture Edge = Falling , Noice Cancel = 1

'to read the input capture register :
W = Capture1
'to write to the capture register :
Capture1 = W

'The TIMER also has two compare registers A and B
'When the timer value matches a compare register, an action can be performed
Config Timer1 = Counter , Edge = Falling , Compare A = Set , Compare B = Toggle
'SET , will set the OC1X pin
'CLEAR, will clear the OC1X pin
'TOGGLE, will toggle the OC1X pin
'DISCONNECT, will disconnect the TIMER from output pin OC1X

'To read write the compare registers, you can use the COMPARE1A and COMPARE1B
variables
Compare1a = W
W = Compare1a

'And the TIMER can be used in PWM mode
'You have the choice between 8,9 or 10 bit PWM mode
'Also you can specify if the counter must count UP or down after a match
'to the compare registers
'Note that there are two compare registers A and B
Config Timer1 = Pwm , Pwm = 8 , Compare A Pwm = Clear Up , Compare B Pwm = Clear Down

'to set the PWM registers, just assign a value to the compare A and B registers
Compare1a = 100
Compare1b = 200

'Or for better reading :
Pwm1a = 100
Pwm1b = 200

End

CONFIG TIMER2

Action
Configure TIMER2.

Syntax for the 8535
CONFIG TIMER2 = TIMER | PWM , ASYNC=ON |OFF,
PRESCALE = 1 | 8 | 32 | 64 | 128 | 256 | 1024 ,
COMPARE = CLEAR | SET | TOGGLE I DISCONNECT ,

Ver. 1.11.6.3 BASCOM-AVR Page 224 of 420

PWM = ON | OFF ,
COMPARE PWM = CLEAR UP| CLEAR DOWN | DISCONNECT

Syntax for the M103
CONFIG TIMER2 = COUNTER| TIMER | PWM ,
EDGE= FALLING |RISING,
PRESCALE = 1 | 8 | 64 | 256 | 1024 ,
COMPARE = CLEAR | SET | TOGGLE I DISCONNECT ,
PWM = ON | OFF ,
COMPARE PWM = CLEAR UP| CLEAR DOWN | DISCONNECT

Remarks
The TIMER2 is an 8 bit counter.
It depends on the chip if it can work as a counter or not.

The syntax shown above must be on one line. Not all the options need to be
selected.

Here is the effect of the various options.
EDGE You can select whether the TIMER will count on the falling or

rising edge. Only for COUNTER mode.

PRESCALE The TIMER is connected to the system clock in this case. You

can select the division of the system clock with this parameter.
Valid values are 1 , 8, 64, 256 or 1024
or
1 , 8, 32 , 64 , 256 or 1024 for the M103

The TIMER2 also has a compare registers
When the timer value matches a compare register, an action can be
performed
COMPARE The action can be:

SET will set the OC2 pin

Ver. 1.11.6.3 BASCOM-AVR Page 225 of 420

CLEAR will clear the OC2 pin
TOGGLE will toggle the OC2 pin
DISCONNECT will disconnect the TIMER from output pin OC2

And the TIMER can be used in 8 bit PWM mode
You can specify if the counter must count UP or down after a match
to the compare registers

COMPARE PWM PWM compare mode. Can be CLEAR UP or CLEAR DOWN

Example
'---

Dim W As Byte

Config Timer2 = Timer , ASYNC = 1 , Prescale = 128

On TIMER2 Myisr

ENABLE INTERRUPTS

ENABLE TIMER2

DO

LOOP

MYISR:

'get here every second with a 32768 KHz xtal

RETURN

'You can read or write to the timer with the COUNTER2 or TIMER2
variable

W = Timer2

Timer2 = W

CONFIG WAITSUART

Action
Compiler directive that specifies that software UART waits after sending the

Ver. 1.11.6.3 BASCOM-AVR Page 226 of 420

last byte.

Syntax
CONFIG WAITSUART = value

Remarks
value A numeric value in the range of 1-255.

A higher value means a longer delay in mS.

When the software UART routine are used in combination with serial LCD
displays it can be convenient to specify a delay so the display can process the
data.

See also
OPEN

Example
See OPEN example for more details.

CONFIG WATCHDOG

Action
Configures the watchdog timer.

Syntax
CONFIG WATCHDOG = time

Remarks
Time The interval constant in mS the watchdog timer will count to before it

will reset your program.

Ver. 1.11.6.3 BASCOM-AVR Page 227 of 420

Possible settings :
16 , 32, 64 , 128 , 256 , 512 , 1024 and 2048.

When the WD is started, a reset will occur after the specified number of mS.
With 2048, a reset will occur after 2 seconds, so you need to reset the WD in
your programs periodically with the RESET WATCHDOG statement.

See also
START WATCHDOG , STOP WATCHDOG , RESET WATCHDOG

Example
'---
' (c) 1999 MCS Electronics
' WATCHD.BAS demonstrates the watchdog timer
'---
Config Watchdog = 2048 'reset after 2048 mSec
Start Watchdog 'start the watchdog
timer
Dim I As Word
For I = 1 To 1000

 Print I 'print value
 'Reset Watchdog
 'you will notice that the for next doesnt finish because of the reset
 'when you unmark the RESET WATCHDOG statement it will finish because the
 'wd-timer is reset before it reaches 2048 msec
Next
End

CONST

Action
Declares a symbolic constant.

Syntax
CONST symbol = numconst
CONST symbol = stringconst
CONST symbol = expression

Ver. 1.11.6.3 BASCOM-AVR Page 228 of 420

Remarks
Symbol The name of the symbol.
Numconst The numeric value to assign to the symbol.
Stringconst The string to assign to the symbol
Expression An expression that returns a value to assign the constant

Assigned constants consume no program memory because they only serve
as a reference to the compiler.
The compiler will replace all occurrences of the symbol with the assigned
value.

See also
ALIAS

Difference with BASCOM-8051
In BASCOM-8051 only numeric constants can be used.

Example
'dimension some variables
Dim Z As String * 10
Dim B As Byte

'assign some constants
'constants dont use program memory
Const S = "test"
Const A = 5
'declare a as a constant
Const B1 = &B1001

'or use an expression to assign a constant
Const X = (b1 * 3) + 2
Const Ssingle = Sin(1)

Ver. 1.11.6.3 BASCOM-AVR Page 229 of 420

COUNTER0 and COUNTER1

Action
Set or retrieve the internal 16 bit hardware register.

Syntax
COUNTER0 = var
var = COUNTER0

TIMER0 can also be used

COUNTER1 = var
var = COUNTER1

TIMER1 can also be used

CAPTURE1 = var
var = CAPTURE1

TIMER1 capture register

COMPARE1A = var
var = COMPARE1A

TIMER1 COMPARE A register

COMARE1B = var
var = COMPARE1B

TIMER1 COMPARE B register

PWM1A = var
var = PWM1A

TIMER1 COMPAREA register. (Is used for
PWM)

PWM1B = var
var = PRM1B

TIMER1 COMPARE B register. (Is used for
PWM)

Remarks
Var A byte, Integer/Word variable or constant that is assigned to the register or

is read from the register.

Because the above 16 bit register pairs must be accessed somewhat
differently than you may expect, they are implemented as variables.
The exception is TIMER0/COUNTER0, this is a normal 8 bit register and is
supplied for compatibility with the syntax.

When the CPU reads the low byte of the register, the data of the low byte is
sent to the CPU and the data of the high byte is placed in a temp register.
When the CPU reads the data in the high byte, the CPU receives the data in
the temp register.

When the CPU writes to the high byte of the register pair, the written data is

Ver. 1.11.6.3 BASCOM-AVR Page 230 of 420

placed in a temp register. Next when the CPU writes the low byte, this byte of
data is combined with the byte data in the temp register and all 16 bits are
written to the register pairs. So the MSB must be accessed first.

All of the above is handled automatically by BASCOM when accessing the
above registers.
Note that the available registers may vary from chip to chip.
The BASCOM documentation used the 8515 to describe the different
hardware registers.

CPEEK

Action
Returns a byte stored in code memory.

Syntax
var = CPEEK(address)

Remarks
Var Numeric variable that is assigned with the content of the program

memory at address
Address Numeric variable or constant with the address location

There is no CPOKE statement because you can not write into program
memory.
Cpeek(0) will return the first byte of the file. Cpeek(1) will return the second
byte of the binary file.

See also
PEEK , POKE , INP , OUT

Ver. 1.11.6.3 BASCOM-AVR Page 231 of 420

Example
'---
' (c) 1998-2000 MCS Electronics
' PEEK.BAS
' demonstrates PEEk, POKE, CPEEK, INP and OUT
'
'---
Dim I As Integer , B1 As Byte
'dump internal memory
For I = 0 To 31 'only 32 registers in AVR
 B1 = Peek(i) 'get byte from internal memory
 Print Hex(b1) ; " ";
 'Poke I , 1 'write a value into memory
Next
Print 'new line
'be careful when writing into internal memory !!

'now dump a part ofthe code-memory(program)
For I = 0 To 255
 B1 = Cpeek(i) 'get byte from internal memory
 Print Hex(b1) ; " ";
Next
'note that you can not write into codememory!!

Out &H8000 , 1 'write 1 into XRAM at address 8000
B1 = INP(&H8000) 'return value from XRAM
Print B1

End

CPEEKH

Action
Returns a byte stored in upper page of code memory of M103.

Syntax
var = CPEEKH(address)

Remarks
Var Numeric variable that is assigned with the content of the program

memory at address
Address Numeric variable or constant with the address location

CpeekH(0) will return the first byte of the upper 64KB.
Since the M103 has 64K words of code space the LPM instruction can not

Ver. 1.11.6.3 BASCOM-AVR Page 232 of 420

access the 64 upper Kbytes.
The CpeekH() function peeks in the upper 64 KB.
This function should be used with the M103 only.

See also
PEEK , POKE , INP , OUT

Example
'---
' (c) 1998-2000 MCS Electronics
' PEEK.BAS
' demonstrates PEEk, POKE, CPEEK, INP and OUT
'
'---
Dim I As Integer , B1 As Byte
'dump internal memory
For I = 0 To 31 'only 32 registers in
AVR
 B1 = Peek(i) 'get byte from internal
memory
 Print Hex(b1) ; " ";
 'Poke I , 1 'write a value into memory
Next
Print 'new line
'be careful when writing into internal memory !!

'now dump a part ofthe code-memory(program)
For I = 0 To 255
 B1 = Cpeek(i) 'get byte from internal memory
 Print Hex(b1) ; " ";
Next
'note that you can not write into codememory!!

Out &H8000 , 1 'write 1 into XRAM at address 8000
B1 = INP(&H8000) 'return value from XRAM
Print B1

End

CRC8
Action
Returns the CRC8 value of a variable or array.

Syntax
Var = CRC8(source , L)

Remarks

Ver. 1.11.6.3 BASCOM-AVR Page 233 of 420

Var The variable that is assigned with the CRC8 of variable source.
Source The source variable or first element of the array to get the CRC8 of.
L The number of bytes to check.

CRC8 is used in communication protocols to check if there are no
transmission errors.
The 1wire for example returns a crc byte as the last byte from it’s ID.

See also
CHECKSUM

ASM
The following routine is called from mcs.lib : _CRC8
The routine must be called with Z pointing to the data and R24 must contain
the number of bytes to check.
On return, R16 contains the CRC8 value.
The used registers are : R16-R19, R25.

;##### X = Crc8(ar(1) , 7)
Ldi R24,$07 ; number of bytes
Ldi R30,$64 ; address of ar(1)
Ldi R31,$00 ; load constant in register
Rcall _Crc8 ; call routine
Ldi R26,$60 ; address of X
St X,R16 ; store crc8

Example
Dim Ar(8) As Byte , X As Byte

'init array
Ar(1) = &H2
Ar(2) = &H1C
Ar(3) = &HB8

Ver. 1.11.6.3 BASCOM-AVR Page 234 of 420

Ar(4) = 1
Ar(5) = 0
Ar(6) = 0
Ar(7) = 0

'get crc8 of array. Scan 7 bytes
X = Crc8(ar(1) , 7)

CRYSTAL

Action
Special byte variable that can be used with software UART routine to change
the baudrate during runtime.

Syntax
CRYSTAL = var (old option do not use !!)
___CRYSTAL1 = var
BAUD #1, 2400

Remarks
With the software UART you can generate good baud rates. But chips such
as the ATtiny22 have an internal 1 MHz clock. The clock frequency can
change during runtime by influence of temperature or voltage.
The crystal variable can be changed during runtime to change the baud rate.
The above has been changed in version 1.11
Now you still can change the baud rate with the crystal variable.
But you dont need to dimension it. And the name has been changed:
___CRYSTALx where x is the channel number.
When you opened the channel with #1, the variable will be named
___CRYSTAL1
But a better way is provided now to change the baud rate of the software uart
at run time. You can use the BAUD option now:
Baud #1 , 2400 'change baud rate to 2400 for channel 1
When you use the baud # option, you must specify the baud rate before you

Ver. 1.11.6.3 BASCOM-AVR Page 235 of 420

print or use input on the channel. This will dimension the ___CRYSTALx
variable and load it with the right value.
When you don't use the BAUD # option the value will be loaded from code
and it will not use 2 bytes of your SRAM.
The ___CRYSTALx variable is hidden in the report file because it is a system
variable. But you may assign a value to it after BAUD #x, zzzz has
dimensioned it.

The old CRYSTAL variable does not exist anymore.

Some values for 1 MHz internal clock :
66 for 2400 baud
31 for 4800 baud
14 for 9600 baud

See also
OPEN , CLOSE

Example
Dim B as byte
Open "comd.1:9600,8,n,1,inverted" For Output As #1
Print #1 , B
Print #1 , "serial output"
baud #1, 4800 'use 4800 baud now
Print #1, "serial output"
___CRYSTAL1 = 255
Close #1
End

CURSOR

Action
Set the LCD Cursor State.

Syntax
CURSOR ON / OFF BLINK / NOBLINK

Ver. 1.11.6.3 BASCOM-AVR Page 236 of 420

Remarks
You can use both the ON or OFF and BLINK or NOBLINK parameters.
At power up the cursor state is ON and NOBLINK.

See also
DISPLAY , LCD

Example
Dim a As Byte
a = 255
Lcd A
Cursor Off 'hide cursor
Wait 1 'wait 1 second
Cursor Blink 'blink cursor
End

DATA

Action
Specifies constant values to be read by subsequent READ statements.

Syntax
DATA var [, varn]

Remarks
Var Numeric or string constant.
The DATA related statements use the internal registers pair R8 and R9 to
store the data pointer.

To store a " sign on the data line, you can use :

Ver. 1.11.6.3 BASCOM-AVR Page 237 of 420

DATA $34
The $-sign tells the compiler that the ASCII value will follow of the character.
You can also use this to store special characters that can't be written by the
editor such as chr(7)

Because the DATA statements allows you to generate an EEP file to store in
EEPROM, the $DATA and $EEPROM directives have been added. Read the
description of these directives to learn more about the DATA statement.

The DATA statements must not be accessed by the flow of your program
because the DATA statements are converted to the byte representation of the
DATA.
When your program flow enters the DATA lines, unpredictable results will
occur.
So as in QB, the DATA statement is best be placed at the end of your
program or in a place that program flow will no enter.
For example this is fine:

Print "Hello"
Goto jump
DATA "test"

Jump:
'because we jump over the data lines there is no problem.

The following example will case some problems:
Dim S As String * 10
Print "Hello"
Restore lbl
Read S
DATA "test"
Print S

Ver. 1.11.6.3 BASCOM-AVR Page 238 of 420

When the END statement is used it must be placed BEFORE the DATA lines.

Difference with QB
Integer and Word constants must end with the % -sign.
Long constants must end with the &-sign.
Single constants must end with the !-sign.

See also
READ , RESTORE , $DATA , $EEPROM

Example
'---
' READDATA.BAS
' Copyright 1999-2000 MCS Electronics
'---

Dim A As Integer , B1 As Byte , Count As Byte
Dim S As String * 15
Dim L As Long
Restore Dta1 'point to stored data
For Count = 1 To 3 'for number of data items
 Read B1 : Print Count ; " " ; B1
Next

Restore Dta2 'point to stored data
For Count = 1 To 2 'for number of data items
 Read A : Print Count ; " " ; A
Next

Restore Dta3
Read S : Print S
Read S : Print S

Restore Dta4
Read L : Print L 'long type

End

Dta1:
Data &B10 , &HFF , 10
Dta2:
Data 1000% , -1%

Dta3:
Data "Hello" , "World"
'Note that integer values (>255 or <0) must end with the %-sign
'also note that the data type must match the variable type that is
'used for the READ statement

Dta4:
Data 123456789&
'Note that LONG values must end with the &-sign
'Also note that the data type must match the variable type that is used
'for the READ statement

Ver. 1.11.6.3 BASCOM-AVR Page 239 of 420

DATE$

Action
Internal variable that holds the date.

Syntax
DATE$ = "mm/dd/yy"
var = DATE$

Remarks
The DATE$ variable is used in combination with the CONFIG CLOCK
directive.
The CONFIG CLOCK statement will use the TIMER0 or TIMER2 in async
mode to create a 1 second interrupt. In this interrupt routine the _Sec, _Min
and _Hour variables are updated. The _dat, month and _year variables are
also updated. The date format is in the same format as for QB/VB.
When you assign DATE$ to a string variable these variables are assigned to
the DATE$ variable.
When you assign the DATE$ variable with a constant or other variable, the
_day, _month and _year variables will be changed to the new date.
The only difference with QB/VB is that all data must be provided when
assigning the date. This is done for minimal code. You can change this
behavior of course.

The async timer is only available in the M103, 90S8535, M163 and M32(3).
For other chips it will not work.

ASM
The following asm routines are called.
When assiging DATE$: _set_date (calls _str2byte)
When reading DATE$: _make_dt (calls _byte2str)

Ver. 1.11.6.3 BASCOM-AVR Page 240 of 420

See also
TIME$, CONFIG CLOCK

Example
'--
' MEGACLOCK.BAS
' (c) 2000-2001 MCS Electronics
'--
'This example shows the new TIME$ and DATE$ reserved variables
'With the 8535 and timer2 or the Mega103 and TIMER0 you can
'easily implement a clock by attaching a 32.768 KHz xtal to the timer
'And of course some BASCOM code

'This example is written for the STK300 with M103
Enable Interrupts

'[configure LCD]
$lcd = &HC000 'address for E and RS
$lcdrs = &H8000 'address for only E
Config Lcd = 20 * 4 'nice display from bg micro
Config Lcdbus = 4 'we run it in bus mode and I hooked up only
db4-db7
Config Lcdmode = Bus 'tell about the bus mode

'[now init the clock]
Config Clock = Soft 'this is how simple it is
'The above statement will bind in an ISR so you can not use the TIMER anymore!
'For the M103 in this case it means that TIMER0 can not be used by the user anymore

'assign the date to the reserved date$
'The format is MM/DD/YY
Date$ = "11/11/00"

'assign the time, format in hh:mm:ss military format(24 hours)
'You may not use 1:2:3 !! adding support for this would mean overhead
'But of course you can alter the library routines used

Time$ = "02:20:00"

'clear the LCD display
Cls

Do
 Home 'cursor home
 Lcd Date$; " " ; Time$ 'show the date and time
Loop

'The clock routine does use the following internal variables:
'_day , _month, _year , _sec, _hour, _min
'These are all bytes. You can assign or use them directly
_day = 1
'For the _year variable only the year is stored, not the century
End

DEBOUNCE

Action
Debounce a port pin connected to a switch.

Ver. 1.11.6.3 BASCOM-AVR Page 241 of 420

Syntax
DEBOUNCE Px.y , state , label [, SUB]

Remarks
Px.y A port pin like PINB.0 , to examine.
State 0 for jumping when PINx.y is low , 1 for jumping when PINx.y is

high
Label The label to GOTO when the specified state is detected
SUB The label to GOSUB when the specified state is detected

When you specify the optional parameter SUB, a GOSUB to label is
performed instead of a GOTO.
The DEBOUNCE statements wait for a port pin to get high(1) or low(0).
When it does it waits 25 mS and checks again (eliminating bounce of a
switch)
When the condition is still true and there was no branch before, it branches to
the label.
When DEBOUNCE is executed again, the state of the switch must have gone
back in the original position before it can perform another branch.
Each DEBOUNCE statement which use a different port uses 1 BIT of the
internal memory to hold its state.

See also
CONFIG DEBOUNCE

Example
'---
' DEBOUN.BAS
' Demonstrates DEBOUNCE
'---
Config Debounce = 30 'when the config
statement is not used a default of 25mS will be used

Ver. 1.11.6.3 BASCOM-AVR Page 242 of 420

 'Debounce Pind.0 , 1 , Pr 'try this for branching when high(1)
 Debounce Pind.0 , 0 , Pr , Sub
 Debounce Pind.0 , 0 , Pr , Sub
 ' ^----- label to branch to
 ' ^---------- Branch when P1.0 goes low(0)
 ' ^---------------- Examine P1.0

 'When Pind.0 goes low jump to subroutine Pr
 'Pind.0 must go high again before it jumps again
 'to the label Pr when Pind.0 is low

 Debounce Pind.0 , 1 , Pr 'no branch
 Debounce Pind.0 , 1 , Pr 'will result in a return
without gosub
End

Pr:
 Print "PIND.0 was/is low"
Return

DECLARE FUNCTION

Action
Declares a user function.

Syntax
DECLARE FUNCTION TEST[([BYREF/BYVAL] var as type)] As type

Remarks
test Name of the function.
Var Name of the variable(s).
Type Type of the variable(s) and of the result. Byte,Word, Integer, Long,

Single or String.
When BYREF or BYVAL is not provided, the parameter will be passed by
reference.
Use BYREF to pass a variable by reference with its address.
Use BYVAL to pass a copy of the variable.
See the CALL statement for more details.

You must declare each function before writing the function or calling the
function.

Ver. 1.11.6.3 BASCOM-AVR Page 243 of 420

Bits are global and can not be passed with functions or subs.

See also
CALL, SUB

Example
'--
' (c) 1999-2000 MCS Electronics
' Demonstration of user function
'--

'A user function must be declare before it can be used.
'A function must return a type
Declare Function Myfunction(byval I As Integer , S As String) As Integer
'The byval paramter will pass the parameter by value so the original value
'will not be changed by the function

Dim K As Integer
Dim Z As String * 10
Dim T As Integer
'assign the values
K = 5
Z = "123"

T = Myfunction(k , Z)
Print T
End

Function Myfunction(byval I As Integer , S As String) As Integer
 'you can use local variables in subs and functions
 Local P As Integer

 P = I

 'because I is passed by value, altering will not change the original
 'variable named k
 I = 10

 P = Val(s) + I

 'finally assign result
 'Note that the same data type must be used !
 'So when declared as an Integer function, the result can only be
 'assigned with an Integer in this case.
 Myfunction = P
End Function

DECLARE SUB

Action
Declares a subroutine.

Ver. 1.11.6.3 BASCOM-AVR Page 244 of 420

Syntax
DECLARE SUB TEST[([BYREF/BYVAL] var as type)]

Remarks
test Name of the procedure.
Var Name of the variable(s).
Type Type of the variable(s). Byte, Word, Integer, Long, Single or String.
When BYREF or BYVAL is not provided, the parameter will be passed by
reference.
Use BYREF to pass a variable by reference with its address.
Use BYVAL to pass a copy of the variable.
See the CALL statement for more details.

You must declare each sub before writing or calling the sub procedure.
Bits are global and can not be passed to a sub or function.

See also
CALL, SUB

Example
Dim a As Byte, b1 As Byte, c As Byte
Declare Sub Test(a As Byte)
a = 1 : b1 = 2: c = 3

Print a ; b1 ; c

Call Test(b1)
Print a ;b1 ; c
End

Sub Test(a as byte)
 Print a ; b1 ; c
End Sub

Ver. 1.11.6.3 BASCOM-AVR Page 245 of 420

DECR

Action
Decrements a variable by one.

Syntax
DECR var

Remarks
Var Variable to decrement.

var : Byte, Integer, Word, Long, Single.

There are often situations where you want a number to be decreased by 1.
The Decr statement is provided for compatibility with BASCOM-8051.

See also
INCR

Example
'--
' (c) 2000 MCS Electronics
'--
' file: DECR.BAS
' Demo: DECR
'--
Dim A As Byte , I As Integer

A = 5 'assign value to a
Decr A 'decrease (by one)
Print A 'print it

I = 1000
Decr I
Print I
End

Ver. 1.11.6.3 BASCOM-AVR Page 246 of 420

DEFxxx

Action
Declares all variables that are not dimensioned of the DefXXX type.

Syntax
DEFBIT b Define BIT
DEFBYTE c Define BYTE
DEFINT I Define INTEGER
DEFWORD x Define WORD
DEFLNG l Define LONG
DEFSNG s Define SINGLE

Difference with QB
QB allows you to specify a range like DEFINT A - D. BASCOM doesn't
support this.

Example
Defbit b : DefInt c 'default type for bit and integers

Set b1 'set bit to 1

c = 10 'let c = 10

DEFLCDCHAR

Action
Define a custom LCD character.

Syntax
DEFLCDCHAR char,r1,r2,r3,r4,r5,r6,r7,r8

Ver. 1.11.6.3 BASCOM-AVR Page 247 of 420

Remarks
char Constant representing the character (0-7).
r1-r8 The row values for the character.

You can use the LCD designer to build the characters.

It is important that a CLS follows the DEFLCDCHAR statement(s).

Special characters can be printed with the Chr() function.

See also
Tools LCD designer

Example
Deflcdchar 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 'define special character
Cls 'select LCD DATA RAM
Lcd Chr(0) 'show the character
End

DELAY

Action
Delay program execution for a short time.

Syntax
DELAY

Remarks
Use DELAY to wait for a short time.

Ver. 1.11.6.3 BASCOM-AVR Page 248 of 420

The delay time is ca. 1000 microseconds.

See also
WAIT , WAITMS

Example
Portb = 5
Delay

DIM

Action
Dimension a variable.

Syntax
DIM var AS [XRAM/SRAM/ERAM] type [AT location]

Remarks

Var Any valid variable name such as b1, i or longname. var can also

be an array : ar(10) for example.

Type Bit, Byte, Word, Integer, Long, Single or String
XRAM Specify XRAM to store variable into external memory
SRAM Specify SRAM to store variable into internal memory (default)
ERAM Specify ERAM to store the variable into EEPROM

A string variable needs an additional length parameter:
Dim s As XRAM String * 10
In this case, the string can have a maximum length of 10 characters.

Ver. 1.11.6.3 BASCOM-AVR Page 249 of 420

Note that BITS can only be stored in internal memory.

The optional AT parameter lets you specify where in memory the variable
must be stored. When the memory location already is occupied, the first free
memory location will be used.

Difference with QB
In QB you don't need to dimension each variable before you use it. In
BASCOM you must dimension each variable before you use it. This makes for
safer code.
In addition, the XRAM/SRAM/ERAM options are not available in QB.

See Also
CONST , LOCAL

Example
'--
' (c) 1999-2000 MCS Electronics
'--
' file: DIM.BAS
' demo: DIM
'--
Dim B1 As Bit 'bit can be 0 or 1
Dim A As Byte 'byte range from 0-255
Dim C As Integer 'integer range from -
32767 - +32768
Dim L As Long
Dim W As Word
Dim S As String * 10 'length can be up to 10
characters

'new feature : you can specify the address of the variable
Dim K As Integer At 120
'the next dimensioned variable will be placed after variable s
Dim Kk As Integer

'Assign bits
B1 = 1 'or
Set B1 'use set

'Assign bytes
A = 12
A = A + 1

'Assign integer
C = -12
C = C + 100
Print C

W = 50000
Print W

Ver. 1.11.6.3 BASCOM-AVR Page 250 of 420

'Assign long
L = 12345678
Print L

'Assign string
S = "Hello world"
Print S

End

DISABLE

Action
Disable specified interrupt.

Syntax
DISABLE interrupt

Remarks
Interrupt Description

INT0 External Interrupt 0
INT1 External Interrupt 1
OVF0,TIMER0, COUNTER0 TIMER0 overflow interrupt
OVF1,TIMER1,
COUNTER1

TIMER1 overflow interrupt

CAPTURE1, ICP1 INPUT CAPTURE TIMER1 interrupt
COMPARE1A,OC1A TIMER1 OUTPUT COMPARE A interrupt
COMPARE1B,OC1B TIMER1 OUTPUT COMPARE B interrupt
SPI SPI interrupt
URXC Serial RX complete interrupt
UDRE Serial data register empty interrupt
UTXC Serial TX complete interrupt
SERIAL Disables URXC, UDRE and UTXC
ACI Analog comparator interrupt
ADC A/D converter interrupt

Ver. 1.11.6.3 BASCOM-AVR Page 251 of 420

By default all interrupts are disabled.
To disable all interrupts specify INTERRUPTS.
To enable the enabling and disabling of individual interrupts use ENABLE
INTERRUPTS.

The interrupts that are available will depend on the used micro processor.

See also
ENABLE

Example
'--
' SERINT.BAS
' (c) 1999-2001 MCS Electronics
' serial interrupt example for AVR
'--
'$regfile = "8535def.dat"
Const Cmaxchar = 20 'number of characters

Dim B As Bit 'a flag for signalling a
received character
Dim Bc As Byte 'byte counter
Dim Buf As String * Cmaxchar 'serial buffer
Dim D As Byte

'Buf = Space(20)
'unremark line above for the MID() function in the ISR
'we need to fill the buffer with spaces otherwise it will contain garbage

Print "Start"

On Urxc Rec_isr 'define serial receive
ISR
Enable Urxc 'enable receive isr

Enable Interrupts 'enable interrupts to
occur

Do
 If B = 1 Then 'we received something
 Disable Serial
 Print Buf 'print buffer
 Print Bc 'print character counter

 'now check for buffer full
 If Bc = Cmaxchar Then 'buffer full
 Buf = "" 'clear
 Bc = 0 'rest character counter
 End If

 Reset B 'reset receive flag
 Enable Serial
 End If

Ver. 1.11.6.3 BASCOM-AVR Page 252 of 420

Loop

Rec_isr:
 Print "*"
 If Bc < Cmaxchar Then 'does it fit into the
buffer?
 Incr Bc 'increase buffer counter

 If Udr = 13 Then 'return?
 Buf = Buf + Chr(0)
 Bc = Cmaxchar
 Else
 Buf = Buf + Chr(udr) 'add to buffer
 End If

 ' Mid(buf , Bc , 1) = Udr
 'unremark line above and remark the line with Chr() to place
 'the character into a certain position
 'B = 1 'set flag
 End If
 B = 1 'set flag
Return

DISPLAY

Action
Turn LCD display on or off.

Syntax
DISPLAY ON / OFF

Remarks
The display is turned on at power up.

See also
LCD

Example
Dim A As Byte
a = 255
Lcd A
Display Off
Wait 1

Ver. 1.11.6.3 BASCOM-AVR Page 253 of 420

Display On
End

DO-LOOP

Action
Repeat a block of statements until condition is true.

Syntax
DO
 statements
LOOP [UNTIL expression]

Remarks
You can exit a DO..LOOP with the EXIT DO statement.
The DO-LOOP is always performed at least once.

See also
EXIT , WHILE-WEND , FOR-NEXT

Example
'--
' (c) 1999 MCS Electronics
'--
' file: DO_LOOP.BAS
' demo: DO, LOOP
'--
Dim a As Byte

A = 1 'assign a var
Do 'begin a do..loop
 Print A 'print var
 Incr A 'increase by one
Loop Until A = 10 'do until a=10
End

Ver. 1.11.6.3 BASCOM-AVR Page 254 of 420

'You can write a never-ending loop with the following code
Do
 'Your code goes here
Loop

DTMFOUT
Action
Sends a DTMF tone to the compare1 output pin of timer 1.

Syntax
DTMFOUT number, duration
DTMFOUT string , duration

Remarks
Number A variable or numeric constant that is equivalent with the number of

your phone keypad.
Duration Time in mS the tone will be generated.
string A string variable that holds the digits to be dialed.

The DTMFOUT statement is based on an Atmel application note (314).
It uses TIMER1 to generate the dual tones. As a consequence, timer1 can not
be used in interrupt mode by your application. You may use it for other tasks.
Since the TIMER1 is used in interrupt mode you must enable global interrupts
with the statement ENABLE INTERRUPTS. The compiler could do this
automatic but when you use other interrupts as well it makes more sense that
you enable them.
The working range is from 4 MHz to 10 MHz system clock(xtal).

The DTMF output is available on the TIMER1 OCA1 pin. For a 2313 this is
PORTB.3.

Take precautions when connecting the output to your telephone line.
Ring voltage can be dangerous!

Ver. 1.11.6.3 BASCOM-AVR Page 255 of 420

System Resources used
TIMER1 in interrupt mode

See also
NONE

ASM
The following routine is called from mcs.lib : _DTMFOUT
R16 holds the number of the tone to generate, R24-R25 hold the duration
time in mS.
Uses R9,R10,R16-R23
The DTMF table is remarked in the source and shown for completeness, it is
generated by the compiler however with taking the used crystal in
consideration.

Example
'--

' DTMFOUT.BAS
' demonstrates DTMFOUT statement based on AN 314
from Atmel
' min osc.freq is 4 MHz, max freq is 10 MHz
'--

'since the DTMFOUT statement uses the TIMER1 interrupt
you must enable
'global interrupts
'This is not done by the compiler in case you have more
ISRs
Enable Interrupts

'the first sample does dtmfout in a loop
Dim Btmp As Byte

Do
 ' there are 16 dtmf tones
 For Btmp = 0 To 15

Ver. 1.11.6.3 BASCOM-AVR Page 256 of 420

 Dtmfout Btmp , 500
' dtmf out on PORTB.3 for the 2313 for 500 mS
 'output is on the OC1A output pin
 Waitms 1000
' wait 1 sec
 Next
Loop
End

'the keypad of most phones looks like this :
'1 2 3 optional are A
'4 5 6 B
'7 8 9 C
'* 0 # D

'the DTMFOUT translates a numeric value from 0-15 into
:
' numeric value phone key
' 0 0
' 1 1
' 2 2
' 3 3
' etc.
' 9 9
' 10 *
' 11 #
' 12 A
' 13 B
' 14 C
' 15 D

ECHO
Action
Turns the ECHO on or off while asking for serial INPUT.

Syntax
ECHO value

Remarks
Value ON to enable ECHO and OFF to disable ECHO.

Ver. 1.11.6.3 BASCOM-AVR Page 257 of 420

When you use INPUT to retrieve values for variables, all info you type can be
echoed back. In this case you will see each character you enter. When ECHO
is OFF, you wil not see the characters you enter.

In versions 1.11.6.2 and earlier the ECHO options were controlled by an
additional paramter on the INPUT statement line like : INPUT "Hello " , var
NOECHO
This would suppress the ECHO of the typed data. The new syntax works by
setting ECHO ON and OFF. For backwards compatibility, using NOECHO on
the INPUT statement line will also work. In effect it will turn echo off and on
automatic.

By default, ECHO is always ON.

See also
INPUT

ASM
The called routines from mcs.lib are _ECHO_ON and _ECHO_OFF

The following ASM is generated when you turn ECHO OFF.
Rcall Echo_Off
This will set bit 3 in R6 that holds the ECHO state.

When you turn the echo ON the following code will be generated
Rcall Echo_On

Example
Dim Var As Byte
'turn off echo
Echo Off
'when you enter the info you will not see it
Input Var
'turn it on again
Echo On
'now you will see what you enter !
Input Var

Ver. 1.11.6.3 BASCOM-AVR Page 258 of 420

ELSE

Action
Executed if the IF-THEN expression is false.

Syntax
ELSE

Remarks
You don't have to use the ELSE statement in an IF THEN .. END IF
structure.
You can use the ELSEIF statement to test for another condition.

IF a = 1 THEN
 ...
ELSEIF a = 2 THEN
..
ELSEIF b1 > a THEN
...
ELSE
...
END IF

See also
IF , END IF , SELECT

Example
Dim A As Byte
A = 10 'let a = 10

Ver. 1.11.6.3 BASCOM-AVR Page 259 of 420

If A > 10 Then 'make a decision
 Print " A >10" 'this will not be printed
Else 'alternative
 Print " A not greater than 10" 'this will be printed
END IF

ENABLE

Action
Enable specified interrupt.

Syntax
ENABLE interrupt

Remarks
Interrupt Description

INT0 External Interrupt 0
INT1 External Interrupt 1
OVF0,TIMER0, COUNTER0 TIMER0 overflow interrupt
OVF1,TIMER1,
COUNTER1

TIMER1 overflow interrupt

CAPTURE1, ICP1 INPUT CAPTURE TIMER1 interrupt
COMPARE1A,OC1A TIMER1 OUTPUT COMPARE A interrupt
COMPARE1B,OC1B TIMER1 OUTPUT COMPARE B interrupt
SPI SPI interrupt
URXC Serial RX complete interrupt
UDRE Serial data register empty interrupt
UTXC Serial TX complete interrupt
SERIAL Disables URXC, UDRE and UTXC
ACI Analog comparator interrupt
ADC A/D converter interrupt

Ver. 1.11.6.3 BASCOM-AVR Page 260 of 420

By default all interrupts are disabled.
To enable the enabling and disabling of interrupts use ENABLE
INTERRUPTS.
Other chips might have additional interrupt sources such as INT2, INT3 etc.

See also
DISABLE

Example
Enable Interrupts 'allow interrupts to be
set
Enable Timer1 'enables the TIMER1
interrupt

END

Action
Terminate program execution.

Syntax
END

Remarks
STOP can also be used to terminate a program.

When an END statement is encountered, all interrupts are disabled and a
never-ending loop is generated. When a STOP is encountered the interrupts
will not be disabled. Only a never ending loop will be created.

Ver. 1.11.6.3 BASCOM-AVR Page 261 of 420

See also
STOP

Example
Print "Hello" 'print this
End 'end program execution and disable all interrupts

EXIT

Action
Exit a FOR..NEXT, DO..LOOP , WHILE ..WEND, SUB..END SUB or
FUNCTION..END FUNCTION.

Syntax
EXIT FOR
EXIT DO
EXIT WHILE
EXIT SUB
EXIT FUNCTION

Remarks
With the EXIT statement you can exit a structure at any time.

Example
'--
' (c) 2000 MCS Electronics
'--
' file: EXIT.BAS
' demo: EXIT
'--
Dim B1 As Byte , A As Byte

Ver. 1.11.6.3 BASCOM-AVR Page 262 of 420

B1 = 50 'assign var
For A = 1 To 100 'for next loop
 If A = B1 Then 'decision
 Exit For 'exit loop
 End If
Next
Print "Exit the FOR..NEXT when A was " ; A

A = 1
Do
 Incr A
 If A = 10 Then
 Exit Do
 End If
Loop
Print "Loop terminated"
End

EXP
Action
Returns e(the base of the natural logarithm) to the power of a single variable.

Syntax
Target = Exp(source)

Remarks
Target The single that is assigned with the Exp() of single target.
Source The source single to get the Exp of.

Exp() makes use of single variables that are generated automatic by the
compiler.
The variables are named ___SNGTMP1 - ___SNGTMP4. These variables
may be reused by your application.

See also
LOG

Example
Dim X As Single

X = Exp(1.1)
Print X
'prints 3.004166124
X = 1.1

Ver. 1.11.6.3 BASCOM-AVR Page 263 of 420

X = Exp(x)
Print X
'prints 3.004164931

FOR-NEXT

Action
Execute a block of statements a number of times.

Syntax
FOR var = start TO end [STEP value]
Note that in 1.11a downto was supported. This has been rewritten for better
compatibility.

Remarks
var The variable counter to use
start The starting value of the variable var
end The ending value of the variable var
value The value var is increased/decreased with each time NEXT is

encountered.

For incremental loops, you must use TO.
For decremental loops, you must use a negative step size.
You must end a FOR structure with the NEXT statement.
The use of STEP is optional. By default, a value of 1 is used.

See also
EXIT FOR

Ver. 1.11.6.3 BASCOM-AVR Page 264 of 420

Example
'--
' (c) 2000 MCS Electronics
'--
' file: FOR_NEXT.BAS
' demo: FOR, NEXT
'--
Dim A As Byte , B1 As Byte , C As Integer

For A = 1 To 10 Step 2
 Print "This is A " ; A
Next A

Print "Now lets count down"
For C = 10 To -5 Step -1
 Print "This is C " ; C
Next

Print "You can also nest FOR..NEXT statements."
For A = 1 To 10
 Print "This is A " ; A
 For B1 = 1 To 10
 Print "This is B1 " ; B1
 Next ' note that you do not have to specify the
parameter
Next A

End

FORMAT

Action
Formats a numeric string.

Syntax
target = Format(source, "mask")

Remarks
target The string that is assigned with the formatted string.
source The source string that holds the number.
mask The mask for formatting the string.

When spaces are in the mask, leading spaces will be added when the
length of the mask is longer than the source string.
" " '8 spaces when source is "123" it will be " 123".
When a + is in the mask (after the spaces) a leading + will be assigned
when the number does not start with the - sign.

Ver. 1.11.6.3 BASCOM-AVR Page 265 of 420

"+" with number "123" will be "+123".
When zero's are provided in the mask, the string will be filled with leading
zero;s.
" +00000" with 123 will be " +00123"
An optional decimal point can be inserted too:
"000.00" will format the number 123 to "001.23"
Combinations can be made but the order must be : spaces, + , 0 an
optional point and zero's.

See also
FUSING

Example
'--
' (c) 2000 MCS Electronics
' Format.bas
'--
Dim S As String * 10
Dim I As Integer

S = "12345"
S = Format(s , "+")
Print S

S = "123"
S = Format(s , "00000")
Print S

S = "12345"
S = Format(s , "000.00")
Print S

S = "12345"
S = Format(s , " +000.00")
Print S

End

FOURTHLINE

Action
Set LCD cursor to the start of the fourth line.

Syntax
FOURTHLINE

Ver. 1.11.6.3 BASCOM-AVR Page 266 of 420

Remarks
Only valid for LCD displays with 4 lines.

See also
HOME , UPPERLINE , LOWERLINE , THIRDLINE ,LOCATE

Example
Dim a as byte
a = 255
Lcd A
Fourthline
Lcd A
Upperline
End

FUSING

Action
FUSING returns a formatted string of a single value.

Syntax
target = Fusing(source, "mask")

Remarks
target The string that is assigned with the formatted string.
source The source variable of the type SINGLE that will be converted
mask The mask for formatting the string.

The mask is a string constant that always must start with #.
After the decimal point you can provide the number of digits you want the
string to have:

Ver. 1.11.6.3 BASCOM-AVR Page 267 of 420

#.### will give a result like 123.456. Rounding is used when you use the
sign. So 123.4567 will be converted into 123.457

When no rounding must be performed, you can use the & sign instead of
the # sign. But only after the DP.
#.&&& will result in 123.456 when the single has the value 123.4567

When the single is zero, 0.0 will be returned, no matter how the mask is set
up.

See also
FORMAT , STR

Example
'---
' FUSING.BAS
' (c) 2001 MCS ELectronics
'---

Dim S As Single , Z As String * 10

'now assign a value to the single
S = 123.45678
'when using str() you can convert a numeric value into a string
Z = Str(s)
Print Z 'prints 123.456779477

Z = Fusing(s , "#.##")

'now use some formatting with 2 digits behind the decimal point with rounding
Print Fusing(s , "#.##") 'prints 123.46

'now use some formatting with 2 digits behind the decimal point without rounding
Print Fusing(s , "#.&&") 'prints 123.45

'The mask must start with #.
'It must have at least one # or & after the point.
'You may not mix & and # after the point.
End

GETADC

Action
Retrieves the analog value from channel 0-7.

Ver. 1.11.6.3 BASCOM-AVR Page 268 of 420

Syntax
var = GETADC(channel)

Remarks
Var The variable that is assigned with the A/D value
Channel The channel to measure

The GETADC() function is only intended for the AVR90S8535 or other chips
that have a built-in A/D converter.
The pins of the A/D converter input can be used for digital I/O too.
But it is important that no I/O switching is done while using the A/D converter.

See also
CONFIG ADC

Example
'--
' ADC.BAS
' demonstration of GETADC() function for 8535 micro
'--
$regfile = "m163def.dat"

'configure single mode and auto prescaler setting
'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz
'The AUTO feature, will select the highest clockrate possible
Config Adc = Single , Prescaler = Auto
'Now give power to the chip
Start Adc

'With STOP ADC, you can remove the power from the chip
'Stop Adc

Dim W As Word , Channel As Byte

Channel = 0
'now read A/D value from channel 0
Do
 W = Getadc(channel)
 Print "Channel " ; Channel ; " value " ; W
 Incr Channel
 If Channel > 7 Then Channel = 0
Loop
End

'The new M163 has options for the reference voltage
'For this chip you can use the additional param :

Ver. 1.11.6.3 BASCOM-AVR Page 269 of 420

'Config Adc = Single , Prescaler = Auto, Reference = Internal
'The reference param may be :
'OFF : AREF, internal reference turned off
'AVCC : AVCC, with external capacitor at AREF pin
'INTERNAL : Internal 2.56 voltage reference with external capacitor ar AREF pin

'Using the additional param on chip that do not have the internal reference will have
no effect.

GETATKBD

Action
Reads a key from a PC AT keyboard.

Syntax
var = GETATKBD()

Remarks
var The variable that is assigned with the key read from the

keyboard.
It may be a byte or a string variable.
When no key is pressed a 0 will be returned.

The GETAKBD() function needs 2 input pins and a translation table for the
keys. You can read more about this at the CONFIG KEYBOARD compiler
directive.

See also
CONFIG KEYBOARD

Example
'--
' PC AT-KEYBOARD Sample
' (c) 2000 MCS Electronics
'--
'For this example :

Ver. 1.11.6.3 BASCOM-AVR Page 270 of 420

'connect PC AT keyboard clock to PIND.2 on the 8535
'connect PC AT keyboard data to PIND.4 on the 8535

$regfile = "8535def.dat"

'The GetATKBD() function does not use an interrupt.
'But it waits until a key was pressed!

'configure the pins to use for the clock and data
'can be any pin that can serve as an input
'Keydata is the label of the key translation table
Config Keyboard = Pind.2 , Data = Pind.4 , Keydata = Keydata

'Dim some used variables
Dim S As String * 12
Dim B As Byte

'In this example we use SERIAL(COM) INPUT redirection
$serialinput = Kbdinput

'Show the program is running
Print "hello"

Do
 'The following code is remarked but show how to use the GetATKBD() function
 ' B = Getatkbd() 'get a byte and store it into byte variable
 'When no real key is pressed the result is 0
 'So test if the result was > 0
 ' If B > 0 Then
 ' Print B ; Chr(b)
 ' End If

 'The purpose of this sample was how to use a PC AT keyboard
 'The input that normally comes from the serial port is redirected to the
 'external keyboard so you use it to type
 Input "Name " , S
 'and show the result
 Print S
Loop
End

'Since we do a redirection we call the routine from the redirection routine
'
Kbdinput:
 'we come here when input is required from the COM port
 'So we pass the key into R24 with the GetATkbd function
' We need some ASM code to save the registers used by the function
$asm
 push r16 ; save used register
 push r25
 push r26
 push r27

Kbdinput1:
 rCall _getatkbd ; call the function
 tst r24 ; check for zero
 breq Kbdinput1 ; yes so try again
 pop r27 ; we got a valid key so restore registers
 pop r26
 pop r25
 pop r16
 $end Asm
 'just return
Return

'The tricky part is that you MUST include a normal call to the routine
'otherwise you get an error
'This is no clean solution and will be changed
B = Getatkbd()

'This is the key translation table

Keydata:
'normal keys lower case
Data 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , &H5E , 0
Data 0 , 0 , 0 , 0 , 0 , 113 , 49 , 0 , 0 , 0 , 122 , 115 , 97 , 119 , 50 , 0
Data 0 , 99 , 120 , 100 , 101 , 52 , 51 , 0 , 0 , 32 , 118 , 102 , 116 , 114 , 53 , 0
Data 0 , 110 , 98 , 104 , 103 , 121 , 54 , 7 , 8 , 44 , 109 , 106 , 117 , 55 , 56 , 0
Data 0 , 44 , 107 , 105 , 111 , 48 , 57 , 0 , 0 , 46 , 45 , 108 , 48 , 112 , 43 , 0
Data 0 , 0 , 0 , 0 , 0 , 92 , 0 , 0 , 0 , 0 , 13 , 0 , 0 , 92 , 0 , 0

Ver. 1.11.6.3 BASCOM-AVR Page 271 of 420

Data 0 , 60 , 0 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0
Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 , 0 , 0

'shifted keys UPPER case
Data 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
Data 0 , 0 , 0 , 0 , 0 , 81 , 33 , 0 , 0 , 0 , 90 , 83 , 65 , 87 , 34 , 0
Data 0 , 67 , 88 , 68 , 69 , 0 , 35 , 0 , 0 , 32 , 86 , 70 , 84 , 82 , 37 , 0
Data 0 , 78 , 66 , 72 , 71 , 89 , 38 , 0 , 0 , 76 , 77 , 74 , 85 , 47 , 40 , 0
Data 0 , 59 , 75 , 73 , 79 , 61 , 41 , 0 , 0 , 58 , 95 , 76 , 48 , 80 , 63 , 0
Data 0 , 0 , 0 , 0 , 0 , 96 , 0 , 0 , 0 , 0 , 13 , 94 , 0 , 42 , 0 , 0
Data 0 , 62 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0 , 0
Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 , 0 , 0

GETKBD

Action
Scans a 4x4 matrix keyboard and return the value of the key pressed.

Syntax
var = GETKBD()

Remarks
Var The variable that is assigned with the value read from

the keyboard

The GETKBD() function can be attached to a port of the uP.
You can define the port with the CONFIG KBD statement.
A schematic for PORTB is shown below

Ver. 1.11.6.3 BASCOM-AVR Page 272 of 420

Note that the port pins can be used for other tasks as well.
When no key is pressed 16 will be returned.
On the STK200 this might not work since other hardware is connected too
that interferes.
You can use the Lookup() function to convert the byte into another value. This
because the GetKBD() function does not return the same value as the key
pressed. It will depend on which keyboard you use.

See also
CONFIG KBD

Example
'---
' GETKBD.BAS
' (c) 2000 MCS Electronics
'---
'specify which port must be used
'all 8 pins of the port are used
Config Kbd = Portb

'dimension a variable that receives the value of the pressed key
Dim B As Byte

'loop for ever
Do
 B = Getkbd()
 'look in the help file on how to connect the matrix keyboard
 Print B
 'when no key is pressed 16 will be returned
 'use the Lookup() function to translate the value to another one

Ver. 1.11.6.3 BASCOM-AVR Page 273 of 420

' this because the returned value does not match the number on the keyboad
Loop
Lcd B
End

GETRC

Action
Retrieves the value of a resistor or a capacitor.

Syntax
 var = GETRC(pin , number)

Remarks
Var The word variable that is assigned with the value.
Pin The PIN name for the R/C is connection.
Number The port pin for the R/C is connection.

The name of the input port (PIND for example) must be passed even when all
the other pins are configured for output. The pin number must also be passed.
This may be a constant or a variable.
A circuit is shown below:

The capacitor is charged and the time it takes to discharge it is measured and
stored in the variable. So when you vary either the resistor or the capacitor,
different values will be returned. This function is intended to return a relative
position of a resistor wiper, not to return the value of the resistor. But with
some calculations it can be retrieved.

Ver. 1.11.6.3 BASCOM-AVR Page 274 of 420

See also
NONE

Example
'--
' GETRC.BAS
' demonstrates how to get the value of a resistor
' The library also shows how to pass a variable for use with individual port
' pins. This is only possible in the AVR architecture and not in the 8051
'--
'The function works by charging a capacitor and uncharge it little by little
'A word counter counts until the capacitor is uncharged.
'So the result is an indication of the position of a pot meter not the actual
'resistor value

'This example used the 8535 and a 10K ohm variable resistor connected to PIND.4
'The other side of the resistor is connected to a capacitor of 100nF.
'The other side of the capacitor is connected to ground.
'This is different than BASCOM-8051 GETRC! This because the architecture is different.

'The result of getrc() is a word so DIM one
Dim W As Word
Do
 'the first parameter is the PIN register.
 'the second parameter is the pin number the resistor/capacitor is connected to
 'it could also be a variable!
 W = Getrc(pind , 4)
 Print W
 Wait 1
Loop

GETRC5

Action
Retrieves the RC5 remote code from a IR transmitter.

Syntax
GETRC5(address, command)

Uses
TIMER0

Remarks
address The RC5 address

Ver. 1.11.6.3 BASCOM-AVR Page 275 of 420

command The RC5 command.

This statement used the AVR 410 application note. Since a timer is needed
for accurate delays and background processing TIMER0 is used by this
statement.
Also the interrupt of TIMER0 is used by this statement.
TIMER0 can be used by your application since the values are preserved by
the statement but a delay can occur. The interrupt can not be reused.

The SFH506-36 is used from Siemens. Other types can be used as well.

For a good operation use the following values for the filter.

Ver. 1.11.6.3 BASCOM-AVR Page 276 of 420

Most audio and video systems are equipped with an infra-red remote control.
The RC5 code is a 14-bit word bi-phase coded signal.
The two first bits are start bits, always having the value 1.
The next bit is a control bit or toggle bit, which is inverted every time a button
is pressed on the remote control transmitter.
Five system bits hold the system address so that only the right system
responds to the code.
Usually, TV sets have the system address 0, VCRs the address 5 and so on.
The command sequence is six bits long, allowing up to 64 different
commands per address.
The bits are transmitted in bi-phase code (also known as Manchester code).

See also
CONFIG RC5

Example
'---
' RC5.BAS
' (c) 1999-2000 MCS Electronics
' based on Atmel AVR410 application note
'---
'use byte library for smaller code
$lib "mcsbyte.lbx"

'This example shows how to decode RC5 remote control signals
'with a SFH506-35 IR receiver.

'Connect to input to PIND.2 for this example
'The GETRC5 function uses TIMER0 and the TIMER0 interrupt.
'The TIMER0 settings are restored however so only the interrupt can not
'be used anymore for other tasks

'tell the compiler which pin we want to use for the receiver input

Config Rc5 = Pind.2

'the interrupt routine is inserted automatic but we need to make it occur
'so enable the interrupts
Enable Interrupts

'reserve space for variables
Dim Address As Byte , Command As Byte
Print "Waiting for RC5..."

Do
 'now check if a key on the remote is pressed
 'Note that at startup all pins are set for INPUT
 'so we dont set the direction here
 'If the pins is used for other input just unremark the next line
 'Config Pind.2 = Input
 Getrc5(address , Command)

 'we check for the TV address and that is 0

Ver. 1.11.6.3 BASCOM-AVR Page 277 of 420

 If Address = 0 Then
 'clear the toggle bit
 'the toggle bit toggles on each new received command
 Command = Command And &B10111111
 Print Address ; " " ; Command
 End If
Loop
End

GOSUB

Action
Branch to and execute subroutine.

Syntax
GOSUB label

Remarks
Label The name of the label where to branch to.

With GOSUB, your program jumps to the specified label, and continues
execution at that label.
When it encounters a RETURN statement, program execution will continue
after the GOSUB statement.

See also
GOTO , CALL , RETURN

Example
'--
' (c) 1999 MCS Electronics
'--
' file: GOSUB.BAS
' demo: GOTO, GOSUB and RETURN
'--

Ver. 1.11.6.3 BASCOM-AVR Page 278 of 420

Goto Continue
Print "This code will not be executed"

Continue: 'end a label with a colon
Print "We will start execution here"
Gosub Routine
Print "Back from Routine"
End

Routine: 'start a subroutine
 Print "This will be executed"
Return 'return from subroutine

GOTO

Action
Jump to the specified label.

Syntax
GOTO label

Remarks
Labels can be up to 32 characters long.
When you use duplicate labels, the compiler will give you a warning.

See also
GOSUB

Example

Dim A As Byte
Start: 'a label must end with a
colon
A = A + 1 'increment a
If A < 10 Then 'is it less than 10?
 Goto Start 'do it again
End If 'close IF

Ver. 1.11.6.3 BASCOM-AVR Page 279 of 420

Print "Ready" 'that is it

HEX

Action
Returns a string representation of a hexadecimal number.

Syntax
var = Hex(x)

Remarks
var A string variable.
X A numeric variable of data type Byte, Integer, Word,

Long or Single.

See also
HEXVAL , VAL , STR , BIN

Example

Dim A As Byte , S As String * 2 , Sn As Single
a = 123
s = Hex(a)
Print s
Print Hex(a)
Sn = 1.2
Print Hex(sn)
End

Ver. 1.11.6.3 BASCOM-AVR Page 280 of 420

HEXVAL

Action
Convert string representing a hexadecimal number into a numeric variable.

Syntax
var = HEXVAL(x)

Remarks
Var The numeric variable that must be assigned.
X The hexadecimal string that must be converted.

Difference with QB
In QB you can use the VAL() function to convert hexadecimal strings.
But since that would require an extra test for the leading &H signs that are
required in QB, a separate function was designed.

See also
HEX , VAL , STR , BIN

Example
Dim A As Byte , S As String * 2 , Sn As Single
S = "A"
A = Hexval(s)
Print A ; Spc(10) ; Hex(a)
End

HIGH

Action

Ver. 1.11.6.3 BASCOM-AVR Page 281 of 420

Retrieves the most significant byte of a variable.

Syntax
var = HIGH(s)

Remarks
Var The variable that is assigned with the MSB of var S.
S The source variable to get the MSB from.

See also
LOW , HIGHW

Example
Dim I As Integer , Z As Byte
I = &H1001
Z = High(i) ' is 10 hex or 16 dec
End

HIGHW
Action
Retrieves the most significant word of a long variable.

Syntax
var = HIGHW(s)

Remarks
Var The variable that is assigned with the MS word of var S.
S The source variable to get the MSB from.

Ver. 1.11.6.3 BASCOM-AVR Page 282 of 420

See also
LOW , HIGH

Example
Dim X As Word , L As Long
L = &H12345678
X = Highw(l)
Print Hex(x)

HOME

Action
Place the cursor at the specified line at location 1.

Syntax
HOME UPPER / LOWER /THIRD / FOURTH

Remarks
If only HOME is used than the cursor will be set to the upper line.
You can also specify the first letter of the line like: HOME U

See also
CLS , LOCATE

Example
Cls

Ver. 1.11.6.3 BASCOM-AVR Page 283 of 420

Lowerline
Lcd "Hello"
Home Upper
Lcd "Upper"
End

I2CRECEIVE

Action
Receives data from an I2C serial device.

Syntax
I2CRECEIVE slave, var
I2CRECEIVE slave, var ,b2W, b2R

Remarks
Slave A byte, Word/Integer variable or constant with the slave address

from the I2C-device.
Var A byte or integer/word variable that will receive the information

from the I2C-device.
b2W The number of bytes to write.

Be cautious not to specify too many bytes!
b2R The number of bytes to receive.

Be cautious not to specify too many bytes!
You can specify the base address of the slave chip because the read/write bit
is set/reset by the software.

See also
I2CSEND , I2CSTART , I2CSTOP , I2CRBYTE , I2CWBYTE

Example

Ver. 1.11.6.3 BASCOM-AVR Page 284 of 420

Config Sda = Portb.5
Config Scl = Portb.7
Dim X As Byte , Slave As Byte
X = 0 'reset variable
Slave = &H40 'slave address of a PCF
8574 I/O IC
I2creceive Slave , X 'get the value
Print X 'print it

Dim Buf(10) As Byte
Buf(1) = 1 : Buf(2) = 2
I2creceive Slave , Buf(1) , 2 , 1 'send two bytes and
receive one byte
Print Buf(1) 'print the received byte

End

I2CSEND

Action
Send data to an I2C-device.

Syntax
I2CSEND slave, var
I2CSEND slave, var , bytes

Remarks
Slave The slave address off the I2C-device.
Var A byte, integer/word or numbers that holds the value, which will be,

send to the I2C-device.
Bytes The number of bytes to send.

See also
I2CRECEIVE , I2CSTART , I2CSTOP , I2CRBYTE , I2CWBYTE

Ver. 1.11.6.3 BASCOM-AVR Page 285 of 420

Example
Config Sda = Portb.5
Config Scl = Portb.7
Dim X As Byte , A As Byte , Bytes As Byte
x = 5 'assign variable to 5
Dim Ax(10) As Byte
Const Slave = &H40 'slave address of a PCF
8574 I/O IC
I2csend Slave , X 'send the value or

For a = 1 to 10
 ax(a) = a 'Fill dataspace
Next
Bytes = 10
I2csend Slave , Ax(1) , Bytes
END

I2START,I2CSTOP, I2CRBYTE, I2CWBYTE

Action
I2CSTART generates an I2C start condition.
I2CSTOP generates an I2C stop condition.
I2CRBYTE receives one byte from an I2C-device.
I2CWBYTE sends one byte to an I2C-device.

Syntax
I2CSTART
I2CSTOP
I2CRBYTE var, ack/nack
I2CWBYTE val

Remarks
Var A variable that receives the value from the I2C-device.
ack/nack Specify ACK if there are more bytes to read.

Specify NACK if it is the last byte to read.
Val A variable or constant to write to the I2C-device.

These statements are provided as an addition to the I2CSEND and

Ver. 1.11.6.3 BASCOM-AVR Page 286 of 420

I2CRECEIVE functions.

See also
I2CSEND , I2CRECEIVE , I2CSTART , I2CSTOP , I2CRBYTE , I2CWBYTE

Example
Config Sda = Portb.5
Config Scl = Portb.7
'-------- Writing and reading a byte to an EEPROM 2404 -----------------
Dim A As Byte
Const Adresw = 174 'write of 2404
Const Adresr = 175 'read address of 2404
I2cstart 'generate start
I2cwbyte Adresw 'send slave address
I2cwbyte 1 'send address of EEPROM
I2cwbyte 3 'send a value
I2cstop 'generate stop
Waitms 10 'wait 10 mS because that is the time that the chip needs to
write the data

'----------------now read the value back into the var a -------------------
I2cstart 'generate start
I2cwbyte Adresw 'write slave address
I2cwbyte 1 'write address of EEPROM to read
I2cstart 'generate repeated start
I2cwbyte Adresr 'write slave address of EEPROM
I2crbyte A , Nack 'receive value into a. nack means last byte to
receive
I2cstop 'generate stop
Print A 'print received value
End

IDLE

Action
Put the processor into the idle mode.

Syntax
IDLE

Ver. 1.11.6.3 BASCOM-AVR Page 287 of 420

Remarks
In the idle mode, the system clock is removed from the CPU but not from the
interrupt logic, the serial port or the timers/counters.
The idle mode is terminated either when an interrupt is received(from the
watchdog, timers, external level triggered or ADC) or upon system reset
through the RESET pin.

See also
POWERDOWN

Example
IDLE

IF-THEN-ELSE-END IF

Action
Allows conditional execution or branching, based on the evaluation of a
Boolean expression.

Syntax
IF expression THEN

[ELSEIF expression THEN]
[ELSE]

 END IF

Remarks
Expression Any expression that evaluates to true or false.

The one line version of IF can be used :

Ver. 1.11.6.3 BASCOM-AVR Page 288 of 420

IF expression THEN statement [ELSE statement]
The use of [ELSE] is optional.

Tests like IF THEN can also be used with bits and bit indexes.
IF var.bit = 1 THEN
 ^--- bit is a variable or numeric constant in the range from 0-255

Dim Var As Byte , Idx As Byte
Var = 255
Idx = 1
If Var.idx = 1 Then
 Print "Bit 1 is 1"
End If

See also
ELSE

Example
Dim A As Integer
A = 10
If A = 10 Then 'test expression
 Print "This part is executed." 'this will be printed
Else
 Print "This will never be executed." 'this not
End If
If A = 10 Then Print "New in BASCOM"
If A = 10 Then Goto Label1 Else Print "A<>10"
Label1:

Rem The following example shows enhanced use of IF THEN
If A.15 = 1 Then 'test for bit
 Print "BIT 15 IS SET"
End If
Rem the following example shows the 1 line use of IF THEN [ELSE]
If A.15 = 0 Then Print "BIT 15 is cleared" Else Print "BIT 15 is set"

INCR

Action
Increments a variable by one.

Syntax
INCR var

Ver. 1.11.6.3 BASCOM-AVR Page 289 of 420

Remarks
Var Any numeric variable.

See also
DECR

Example
Dim A As Byte
Do 'start loop
 Incr A 'increment a by 1
 Print A 'print a
Loop Until A > 10 'repeat until a is greater
than 10
Print A

INKEY

Action
Returns the ASCII value of the first character in the serial input buffer.

Syntax
var = INKEY()
var = INKEY(#channel)

Remarks
Var Byte, Integer, Word, Long or String variable.
Channel A constant number that identifies the opened channel if

software UART mode

If there is no character waiting, a zero will be returned. The ERR variable will

Ver. 1.11.6.3 BASCOM-AVR Page 290 of 420

be set to 1 if there no character waiting. ERR will be set to 0 when there is a
character waiting.
This allows to receive 0 byte values too.

The INKEY routine can be used when you have a RS-232 interface on your
uP.
The RS-232 interface can be connected to a comport of your computer.

See also
WAITKEY

Example
Dim A As Byte
Do 'start loop
 A = Inkey() 'look for character
 If A > 0 Then 'is variable > 0?
 Print A 'yes , so print it
 End If
Loop 'loop forever
'The example above is for the HARDWARE UART

'The OPEN.BAS sample contains a sample for use with the software
UART.

INP

Action
Returns a byte read from a hardware port or any internal or external memory
location.

Syntax
var = INP(address)

Remarks
var Numeric variable that receives the value.

Ver. 1.11.6.3 BASCOM-AVR Page 291 of 420

address The address where to read the value from. (0- &HFFFF)

The PEEK() function will read only the lowest 32 memory locations (registers).
The INP() function can read from any memory location since the AVR has a
linear memory model.

When you want to read from XRAM memory you must enable external
memory access in the Compiler Chip Options.

See also
OUT PEEK

Example
Dim A As Byte
A = Inp(&H8000) 'read value that is placed on databus(d0-d7) at hex address 8000
Print A
End

INPUTBIN

Action
Read binary data from the serial port.

Syntax
INPUTBIN var1 [,var2]
INPUTBIN #channel , var1 [,var2]

Remarks
var1 The variable that is assigned with the characters from the serial port.

Ver. 1.11.6.3 BASCOM-AVR Page 292 of 420

var2 An optional second (or more) variable that is assigned with the data
from the serial input stream.

The channel is for use with the software UART routine and must be used with
OPEN and CLOSE.

The number of bytes to read depends on the variable you use.
When you use a byte variable, 1 character is read from the serial port.
An integer will wait for 2 characters and an array will wait until the whole array
is filled.

Note that the INPUTBIN statement doesn't wait for a <RETURN> but just for
the number of bytes.

See also
PRINTBIN

Example
Dim A As Byte , C As Integer
Inputbin A , C 'wait for 3 characters
End

INPUTHEX

Action
Allows hexadecimal input from the keyboard during program execution.

Syntax
INPUTHEX [" prompt"] , var [, varn]

Ver. 1.11.6.3 BASCOM-AVR Page 293 of 420

Remarks
prompt An optional string constant printed before the prompt character.
Var,varn A numeric variable to accept the input value.

The INPUTHEX routine can be used when you have a RS-232 interface on
your uP.
The RS-232 interface can be connected to a serial communication port of
your computer.
This way you can use a terminal emulator and the keyboard as input device.
You can also use the build in terminal emulator.
The input entered may be in lower or upper case (0-9 and A-F)

If var is a byte then the input can be maximum 2 characters long.
If var is an integer/word then the input can be maximum 4 characters long.
If var is a long then the input can be maximum 8 characters long.

Difference with QB
In QB you can specify &H with INPUT so QB will recognize that a
hexadecimal string is being used.
BASCOM implements a new statement: INPUTHEX.

See also
INPUT , ECHO

Example
Dim X As Byte
Echo On
Inputhex "Enter a number " , X 'ask for input like AF
Echo Off
Inputhex "Enter a number " , X 'ask for input like ab
Echo On
End

Ver. 1.11.6.3 BASCOM-AVR Page 294 of 420

INPUT

Action
Allows input from the keyboard during program execution.

Syntax
INPUT [" prompt"] , var [, varn]

Remarks
Prompt An optional string constant printed before the prompt

character.
Var,varn A variable to accept the input value or a string.

The INPUT routine can be used when you have an RS-232 interface on your
uP.
The RS-232 interface can be connected to a serial communication port of
your computer.
This way you can use a terminal emulator and the keyboard as an input
device.
You can also use the built-in terminal emulator.

Difference with QB
In QB you can specify &H with INPUT so QB will recognize that a
hexadecimal string is being used.
BASCOM implements a new statement : INPUTHEX.

See also

Ver. 1.11.6.3 BASCOM-AVR Page 295 of 420

INPUTHEX , PRINT , ECHO

Example
'--
' (c) 1999-2000 MCS Electronics
'--
' file: INPUT.BAS
' demo: INPUT, INPUTHEX
'--
'To use another baudrate and crystalfrequency use the
'metastatements $BAUD = and $CRYSTAL =
$baud = 9600 'try 1200 baud for
example
$crystal = 4000000 '12 MHz

Dim V As Byte , B1 As Byte
Dim C As Integer , D As Byte
Dim S As String * 15

Input "Use this to ask a question " , V
Input B1 'leave out for no
question

Input "Enter integer " , C
Print C

Inputhex "Enter hex number (4 bytes) " , C
Print C
Inputhex "Enter hex byte (2 bytes) " , D
Print D

Input "More variables " , C , D
Print C ; " " ; D

Input C Noecho 'supress echo

Input "Enter your name " , S
Print "Hello " ; S

Input S Noecho 'without echo
Print S
End

Dim X As Byte
Echo On
Inputhex "Enter a number " , X 'ask for input
Echo Off
Inputhex "Enter a number " , X 'ask for input
Echo On
End

INSTR

Action

Returns the position of a sub string in a string.

Syntax

var = INSTR(start , string , substr)

Ver. 1.11.6.3 BASCOM-AVR Page 296 of 420

var = INSTR(string , substr)

Remarks
Var Numeric variable that will be assigned with the position of the

sub string in the string. Returns 0 when the sub string is not
found.

Start An optional numeric parameter that can be assigned with the
first position where must be searched in the string. By default
(when not used) the whole string is searched starting from
position 1.

String The string to search.
Substr The search string.

No constant can be used for string it must be a string.

Only substr can be either a string or a constant.

See also
NONE

Example
Dim S As String * 10 , Z As String * 5
Dim Bp As Byte
S = "This is a test"
Z = "is"
Bp = Instr(s , Z) : Print Bp 'should print 3
Bp = Instr(4 , S , Z) : Print Bp 'should print 6
End

LCASE
Action
Converts a string in to all lower case characters.

Ver. 1.11.6.3 BASCOM-AVR Page 297 of 420

Syntax
Target = Lcase(source)

Remarks
Target The string that is assigned with the lower case string of string target.
Source The source string.

See also

UCASE

ASM
The following ASM routines are called from MCS.LIB : _LCASE
The generated ASM code : (can be different depending on the micro used)
;##### Z = Lcase(s)
Ldi R30,$60
Ldi R31,$00 ; load constant in register
Ldi R26,$6D
Rcall _Lcase

Example
Dim S As String * 12 , Z As String * 12
S = "Hello World"
Z = Lcase(s)
Print Z
Z = Ucase(s)
Print Z
End

LCD

Action
Send constant or variable to LCD display.

Ver. 1.11.6.3 BASCOM-AVR Page 298 of 420

Syntax
LCD x

Remarks
X Variable or constant to display.

More variables can be displayed separated by the ; -sign
LCD a ; b1 ; "constant"
The LCD statement behaves just like the PRINT statement. So SPC() can be
used too.

See also
$LCD , $LCDRS , CONFIG LCD

Example
'--
' (c) 1999-2000 MCS Electronics
'--
' file: LCD.BAS
' demo: LCD, CLS, LOWERLINE, SHIFTLCD, SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'--

$sim
'REMOVE the above command for the real program !!
'$sim is used fr faster simulation

'note : tested in PIN mode with 4-bit

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 , Db7 = Portb.4 ,
E = Portb.5 , Rs = Portb.6
Config Lcdpin = Pin , Db4 = Porta.4 , Db5 = Porta.5 , Db6 = Porta.6 , Db7 = Porta.7 ,
E = Portc.7 , Rs = Portc.6
'These settings are for the STK200 in PIN mode
'Connect only DB4 to DB7 of the LCD to the LCD connector of the STK D4-D7
'Connect the E-line of the LCD to A15 (PORTC.7) and NOT to the E line of the LCD
connector
'Connect the RS, V0, GND and =5V of the LCD to the STK LCD connector

Rem with the config lcdpin statement you can override the compiler settings

Dim A As Byte
Config Lcd = 16 * 2 'configure lcd screen
'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over 2 lines

'$LCD = address will turn LCD into 8-bit databus mode

Ver. 1.11.6.3 BASCOM-AVR Page 299 of 420

' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the LCD display
Lcd "Hello world." 'display this at the top
line
Wait 1
Lowerline 'select the lower line
Wait 1
Lcd "Shift this." 'display this at the
lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the text to the
right
 Wait 1 'wait a moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the text to the
left
 Wait 1 'wait a moment
Next

Locate 2 , 1 'set cursor position
Lcd "*" 'display this
Wait 1 'wait a moment

Shiftcursor Right 'shift the cursor
Lcd "@" 'display this
Wait 1 'wait a moment

Home Upper 'select line 1 and
return home
Lcd "Replaced." 'replace the text
Wait 1 'wait a moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a moment
Cursor On Blink 'show cursor
Wait 1 'wait a moment
Display Off 'turn display off
Wait 1 'wait a moment
Display On 'turn display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home on line three
Home Fourth
Home F 'first letteer also
works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 ' replace ? with
number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 ' replace ? with
number (0-7)
Cls 'select data RAM
Rem it is important that a CLS is following the deflcdchar statements because it will
set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the special
character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into ACC
!rCall _write_lcd 'put it on LCD
End

Ver. 1.11.6.3 BASCOM-AVR Page 300 of 420

LEFT

Action
Return the specified number of leftmost characters in a string.

Syntax
var = Left(var1 , n)

Remarks
Var The string that is assigned.
Var1 The source string.
n The number of characters to get from the source string.

See also
RIGHT , MID

Example
Dim S As Xram String * 15 , Z As String * 15
S = "ABCDEFG"
Z = Left(s , 5)
Print Z 'ABCDE
End

LEN

Action
Returns the length of a string.

Syntax
var = LEN(string)

Ver. 1.11.6.3 BASCOM-AVR Page 301 of 420

Remarks
var A numeric variable that is assigned with the length of string.
string The string to calculate the length of.

Strings can be maximum 254 bytes long.

Example
Dim S As String * 12
Dim A As Byte
S = "test"
A = Len(s)
Print A ' prints 4
Print Len(s)

LOAD

Action
Load specified TIMER with a reload value.

Syntax
LOAD TIMER , value

Remarks
TIMER TIMER0 , TIMER1 or TIMER2
Value The variable or value to load.

The TIMER0 does not have a reload mode. But when you want the timer to
generate an interrupt after 10 ticks for example, you can use the RELOAD
statement.
It will do the calculation. (256-value)

Ver. 1.11.6.3 BASCOM-AVR Page 302 of 420

So LOAD TIMER0, 10 will load the TIMER0 with a value of 246 so that it will
overflow after 10 ticks.

TIMER1 is a 16 bit counter so it will be loaded with the value of 65536-value.

LOADADR

Action
Loads the address of a variable into a register pair.

Syntax
LOADADR var , reg

Remarks
var A variable which address must be loaded into the register pair

X, Y or Z.
reg The register X, Y or Z.

The LOADADR statement serves as an assembly helper routine.

Example
Dim S As String * 12

Dim A As Byte

$ASM

 loadadr S , X 'load address into R26 and R27

 ld _temp1, X 'load value of location R26/R27 into R24(_temp1)

$END ASM

Ver. 1.11.6.3 BASCOM-AVR Page 303 of 420

LOCAL

Action
Dimensions a variable LOCAL to the function or sub program.

Syntax
LOCAL var As Type

Remarks
Var The name of the variable
Type The data type of the variable.
There can be only LOCAL variables of the type BYTE, INTEGER, WORD,
LONG, SINGLE or STRING.

A LOCAL variable is a temporary variable that is stored on the frame.
When the SUB or FUNCTION is terminated, the memory will be released
back to the frame.
BIT variables are not possible because they are GLOBAL to the system.

The AT , ERAM, SRAM, XRAM directives can not be used with a local DIM
statement. Also local arrays are not possible.

See also
DIM

ASM
NONE

Example
'--
' (c) 2000 MCS Electronics
' DECLARE.BAS
' Note that the usage of SUBS works different in BASCOM-8051
'--
' First the SUB programs must be declared

Ver. 1.11.6.3 BASCOM-AVR Page 304 of 420

'Try a SUB without parameters
Declare Sub Test2

'SUB with variable that can not be changed(A) and
'a variable that can be changed(B1), by the sub program
'When BYVAL is specified, the value is passed to the subprogram
'When BYREF is specified or nothing is specified, the address is passed to
'the subprogram

Declare Sub Test(byval A As Byte , B1 As Byte)
Declare Sub Testarray(byval A As Byte , B1 As Byte)
'All variable types that can be passed
'Notice that BIT variables can not be passed.
'BIT variables are GLOBAL to the application
Declare Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S As String)

'passing string arrays needs a different syntax because the length of the strings must
be passed by the compiler
'the empty () indicated that an array will be passed
Declare Sub Teststr(b As Byte , Dl() As String)

Dim Bb As Byte , I As Integer , W As Word , L As Long , S As String * 10 'dim
used variables
Dim Ar(10) As Byte
Dim Sar(10) As String * 8 'strng array

For Bb = 1 To 10
 Sar(bb) = Str(bb) 'fill the array
Next
Bb = 1
'now call the sub and notice that we always must pass the first address with index 1
Call Teststr(bb , Sar(1))

Call Test2 'call sub
Test2 'or use without CALL
'Note that when calling a sub without the statement CALL, the enclosing parentheses
must be left out
Bb = 1
Call Test(1 , Bb) 'call sub with
parameters
Print Bb 'print value that is
changed

'now test all the variable types
Call Testvar(bb , I , W , L , S)
Print Bb ; I ; W ; L ; S

'now pass an array
'note that it must be passed by reference
Testarray 2 , Ar(1)
Print "ar(1) = " ; Ar(1)
Print "ar(3) = " ; Ar(3)
End

'End your code with the subprograms
'Note that the same variables and names must be used as the declared ones

Sub Test(byval A As Byte , B1 As Byte) 'start sub
 Print A ; " " ; B1 'print passed variables
 B1 = 3 'change value
 'You can change A, but since a copy is passed to the SUB,
 'the change will not reflect to the calling variable
End Sub

Sub Test2 'sub without parameters
 Print "No parameters"
End Sub

Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S As String)
 Local X As Byte

 X = 5 'assign local

 B = X
 I = -1
 W = 40000

Ver. 1.11.6.3 BASCOM-AVR Page 305 of 420

 L = 20000
 S = "test"
End Sub

Sub Testarray(byval A As Byte , B1 As Byte) 'start sub
 Print A ; " " ; B1 'print passed variables
 B1 = 3 'change value of element with index 1
 B1(1) = 3 'specify the index which does the same as the line
above
 B1(3) = 3 'modify other element of
array
 'You can change A, but since a copy is passed to the SUB,
 'the change will not reflect to the calling variable
End Sub

'notice the empty() to indicate that a string array is passed
Sub Teststr(b As Byte , Dl() As String)
 Dl(b) = Dl(b) + "add"
End Sub

LOCATE

Action
Moves the LCD cursor to the specified position.

Syntax
LOCATE y , x

Remarks
X Constant or variable with the position. (1-64*)
Y Constant or variable with the line (1 - 4*)

* Depending on the used display

See also
CONFIG LCD , LCD , HOME , CLS

Example
LCD "Hello"

Locate 1,10

Ver. 1.11.6.3 BASCOM-AVR Page 306 of 420

LCD "*"

LOG

Action
Returns the natural logarithm of a single variable.

Syntax
Target = Log(source)

Remarks
Target The single that is assigned with the LOG() of single target.
Source The source single to get the LOG of.

Log() makes use of single variables that are generated automatic by the
compiler.
The variables are named ___SNGTMP1 - ___SNGTMP4. These variables
may be reused by your application.

The LOG() function can take a lot of time to execute. Especial when large
numbers are used. When the number increases, the accuracy will get less.

See also
EXP

Example
Dim X As Single
X = Log(100)
Print X
'prints 4.605170
X = 100
X = Log(x)
Print X
'Prints 4.605098

Ver. 1.11.6.3 BASCOM-AVR Page 307 of 420

X = Log(1.1)
Print X
'prints 0.095310147
X = 1.1
X = Log(x)
Print X
'prints 0.095310147

'So a smaller number is more precise and is calculated
faster

LOOKDOWN
Action
Returns the index of a series of data.

Syntax
var =LOOKDOWN(value, label, entries)

Remarks
Var The returned index value
Value The value to search for
Label The label where the data starts
entries The number of entries that must be searched

When you want to look in BYTE series the VALUE variable must be
dimensioned as a BYTE. When you want to look in INTEGER or WORD
series the VALUE variable must be dimensioned as an INTEGER.

The LookDown function is the counterpart of the LookUp function.

Ver. 1.11.6.3 BASCOM-AVR Page 308 of 420

Lookdown will search the data for a value and will return the index when the
value is found. It will return –1 when the data is not found.

See also
LOOKUPSTR , LOOKUP

Example
' ---
' LOOKDOWN.BAS
' (c) 2001 MCS Electronics
' ---

Dim Idx as integer, search as byte,entries as byte

'we want to search for the value 3
Search = 3
'there are 5 entries in the table
Entries = 5

'lookup and return the index
Idx = Lookdown(search , Label , Entries)
Print Idx

Search = 1
Idx = Lookdown(search , Label , Entries)
Print Idx

Search = 100
Idx = Lookdown(search , Label , Entries)
Print Idx ' return -1 if not
found

'looking for integer or word data requires that the search variable is
'of the type integer !
Dim Isearch As Integer
Isearch = 400
Idx = Lookdown(isearch , Label2 , Entries)
Print Idx ' return 3

End

Label:
Data 1 , 2 , 3 , 4 , 5

Label2:
Data 1000% , 200% , 400% , 300%

LOOKUP

Action
Returns a value from a table.

Ver. 1.11.6.3 BASCOM-AVR Page 309 of 420

Syntax
var =LOOKUP(value, label)

Remarks
Var The returned value
Value A value with the index of the table
Label The label where the data starts

The value can be up to 65535. 0 will return the first entry.

See also
LOOKUPSTR

Example
Dim B1 As Byte , I As Integer
B1 = Lookup(2 , Dta)
Print B1 ' Prints 2 (zero based)

I = Lookup(0 , Dta2) ' print 1000
Print I
End

Dta:
Data 1 , 2 , 3 , 4 , 5
Dta2:
Data 1000% , 2000%

LOOKUPSTR

Action
Returns a string from a table.

Syntax
var =LOOKUPSTR(value, label)

Ver. 1.11.6.3 BASCOM-AVR Page 310 of 420

Remarks
Var The string returned
Value A value with the index of the table. The index is zero-based. That is,

0 will return the first element of the table.
Label The label where the data starts

The index value can have a maximum value of 255.

See also
LOOKUP

Example
Dim S As String * 4 , Idx As Byte
Idx = 0 : S = Lookupstr(idx , Sdata)
Print S 'will print 'This'
End

Sdata:
Data "This" , "is" ,"a test"

LOW

Action
Retrieves the least significant byte of a variable.

Syntax
var = LOW(s)

Remarks
Var The variable that is assigned with the LSB of var S.

Ver. 1.11.6.3 BASCOM-AVR Page 311 of 420

S The source variable to get the LSB from.

See also
HIGH , HIGHW

Example
Dim I As Integer , Z As Byte
I = &H1001
Z = Low(I) ' is 1
End

LOWERLINE

Action
Reset the LCD cursor to the lower line.

Syntax
LOWERLINE

Remarks
NONE

See also
UPPERLINE, THIRDLINE , FOURTHLINE , HOME

Example
LCD "Test"

LOWERLINE

Ver. 1.11.6.3 BASCOM-AVR Page 312 of 420

LCD "Hello"

End

LTRIM

Action
Returns a copy of a string with leading blanks removed

Syntax
var = LTRIM(org)

Remarks
Var String that receives the result.
Org The string to remove the leading spaces from

See also
RTRIM , TRIM

ASM
NONE

Example
Dim S As String * 6
S = " AB "
Print Ltrim(s)
Print Rtrim(s)
Print Trim(s)
End

MAKEBCD

Action
Convert a variable into its BCD value.

Ver. 1.11.6.3 BASCOM-AVR Page 313 of 420

Syntax
var1 = MAKEBCD(var2)

Remarks
var1 Variable that will be assigned with the converted value.
Var2 Variable that holds the decimal value.

When you want to use an I2C clock device, which stores its values as BCD
values you can use this function to convert variables from decimal to BCD.

For printing the bcd value of a variable, you can use the BCD() function which
converts a BCD number into a BCD string.

See also
MAKEDEC , BCD

Example
Dim A As Byte
A = 65
Lcd A
Lowerline
Lcd Bcd(a)
A = Makebcd(a)
LCD " " ; a
End

MAKEINT

Action
Compact two bytes into a word or integer.

Ver. 1.11.6.3 BASCOM-AVR Page 314 of 420

Syntax
varn = MAKEINT(LSB , MSB)

Remarks
Varn Variable that will be assigned with the converted value.
LSB Variable or constant with the LS Byte.
MSB Variable or constant with the MS Byte.
The equivalent code is:
varn = (256 * MSB) + LSB

See also
LOW , HIGH

Example
Dim a As Integer, I As Integer
A = 2
I = Makeint(a , 1) 'I = (1 * 256) + 2 = 258
End

MAKEDEC

Action
Convert a BCD byte or Integer/Word variable to its DECIMAL value.

Syntax
var1 = MAKEDEC(var2)

Ver. 1.11.6.3 BASCOM-AVR Page 315 of 420

Remarks
var1 Variable that will be assigned with the converted value.
var2 Variable that holds the BCD value.

When you want to use an I2C clock device, which stores its values as BCD
values you can use this function to convert variables from BCD to decimal.

See also
MAKEBCD

Example
Dim A As Byte
a = 65
Print A
Print Bcd(a)
A = Makedec(a)
Print Spc(3) ; A
End

MID

Action
The MID function returns part of a string (a sub string).
The MID statement replaces part of a string variable with another string.

Syntax
var = MID(var1 ,st [, l])
MID(var ,st [, l]) = var1

Remarks

Ver. 1.11.6.3 BASCOM-AVR Page 316 of 420

var The string that is assigned.
Var1 The source string.
st The starting position.
l The number of characters to get/set.

See also
LEFT, RIGHT

Example
Dim S As String * 15 , Z As String * 15
S = "ABCDEFG"
Z = Mid(s , 2 , 3)
Print Z 'BCD
Z = "12345"
Mid(s , 2 , 2) = Z
Print S 'A12DEFG
End

ON INTERRUPT

Action
Execute subroutine when a specified interrupt occurs.

Syntax
ON interrupt label [NOSAVE]

Remarks
Interrupt INT0, INT1, INT2, INT3, INT4,INT5, TIMER0 ,TIMER1, TIMER2,

ADC , EEPROM , CAPTURE1, COMPARE1A,
COMPARE1B,COMPARE1. Or you can use the AVR name
convention :

OC2 , OVF2, ICP1, OC1A, OC1B, OVF1, OVF0, SPI, URXC,
UDRE, UTXC, ADCC, ERDY and ACI.

Ver. 1.11.6.3 BASCOM-AVR Page 317 of 420

Label The label to jump to if the interrupt occurs.
NOSAVE When you specify NOSAVE, no registers are saved and restored

in the interrupt routine. So when you use this option be sure to
save and restore used registers.
When you omit NOSAVE all used registers will be saved. These
are SREG , R31 to R16 and R11 to R0.
R12 – R15 are not saved. When you use floating point math in
the ISR(not recommended) you must save and restore R12-R15
yourself in the ISR.
My_Isr:
 Push R12 ‘ save registers
 Push R13
 Push R14
 Push R15
 Single = single + 1 ‘ we use FP
 Pop R15 ‘ restore registers
 Pop R14
 Pop R13
 Pop R12
RETURN

You must return from the interrupt routine with the RETURN statement.
The first RETURN statement that is encountered that is outside a condition
will generate a RETI instruction. You may have only one such RETURN
statement in your interrupt routine because the compiler restores the registers
and generates a RETI instruction when it encounters a RETURN statement in
the ISR. All other RETURN statements are converted to a RET instruction.

The possible interrupt names can be looked up in the selected
microprocessor register file. 2313def.dat for example shows that for the
compare interrupt the name is COMPARE1. (look at the bottom of the file)

What are interrupts good for?
An interrupt will halt your program and will jump to a specific part of your
program. You can make a DO .. LOOP and poll the status of a pin for
example to execute some code when the input on a pin changes.
But with an interrupt you can perform other tasks and when then pin input

Ver. 1.11.6.3 BASCOM-AVR Page 318 of 420

changes a special part of your program will be executed. When you use
INPUT "Name ", v for example to get a user name via the RS-232 interface it
will wait until a RETURN is received. When you have an interrupt routine and
the int occurs it will branch to the interrupt code and will execute the interrupt
code. When it is finished it will return to the Input statement, waiting until a
RETURN is entered.
Maybe a better example is writing a clock program. You could update a
variable in your program that updates a second counter. But a better way is to
use a TIMER interrupt and update a seconds variable in the TIMER interrupt
handler.
There are multiple interrupt sources and it depends on the used chip which
are available.
To allow the use of interrupts you must set the global interrupt switch with a
ENABLE INTERRUPTS statement. This only allows that interrupts can be
used. You must also set the individual interrupt switches on!
ENABLE TIMER0 for example allows the TIMER0 interrupt to occur.
With the DISABLE statement you turn off the switches.
When the processor must handle an interrupt it will branch to an address at
the start of flash memory. These addresses can be found in the DAT files.
The compiler normally generates a RETI instruction on these addresses so
that in the event that an interrupt occurs, it will return immediately.
When you use the ON ... LABEL statement, the compiler will generate code
that jumps to the specified label. The SREG and other registers are saved at
the LABEL location and when the RETURN is found the compiler restores the
registers and generates the RETI so that the program will continue where it
was at the time the interrupt occurred.
When an interrupt is services no other interrupts can occur because the
processor(not the compiler) will disable all interrupts by clearing the master
interrupt enable bit. When the interrupt is services the interrupt is also cleared
so that it can occur again when the conditions are met that sets the interrupt.
It is not possible to give interrupts a priority. The interrupt with the lowest
address has the highest interrupt!

Finally some tips :
* when you use a timer interrupt that occurs each 10 uS for example, be sure
that the interrupt code can execute in 10 uS. Otherwise you would loose time.
* it is best to set just a simple flag in the interrupt routine and to determine it's
status in the main program. This allows you to use the NOSAVE option that
saves stack space and program space. You only have to Save and Restore
R24 and SREG in that case.

Ver. 1.11.6.3 BASCOM-AVR Page 319 of 420

Example
Enable Interrupts
Enable Int0 'enable the interrupt
On Int0 Label2 Nosave 'jump to label2 on INT0
Do 'endless loop
 nop
Loop
End

Label2:
 Dim A As Byte
 If A > 1 Then
 Return 'generates a RET because it is inside a condition
 End If
Return 'generates a RETI because it is the first RETURN
Return 'generates a RET because it is the second RETURN

ON VALUE

Action
Branch to one of several specified labels, depending on the value of a
variable.

Syntax
ON var [GOTO] [GOSUB] label1 [, label2]

Remarks
Var The numeric variable to test.

This can also be a SFR such as PORTB.
label1, label2 The labels to jump to depending on the value of var.

Note that the value is zero based. So when var is 0, the first specified label is
jumped/branched.

ASM

Ver. 1.11.6.3 BASCOM-AVR Page 320 of 420

The following code will be generated for a non-MEGA micro with ON value
GOTO.
Ldi R26,$60 ; load
address of variable

Ldi R27,$00
; load constant in register

Ld R24,X

Clr R25

Ldi R30, Low(ON_1_ * 1) ; load Z
with address of the label

Ldi R31, High(ON_1_ * 1)

Add zl,r24 ; add value
to Z

Adc zh,r25

Ijmp ; jump to address
stored in Z

ON_1_:

Rjmp lbl1 ; jump table

Rjmp lbl2

Rjmp lbl3

The following code will be generated for a non-MEGA micro with ON value
GOSUB.

;##### On X Gosub L1 , L2

Ldi R30,Low(ON_1_EXIT * 1)

Ldi R31,High(ON_1_EXIT * 1)

Push R30
;push return address

Push R31

Ldi R30,Low(ON_1_ * 1) ;load
table address

Ldi R31,High(ON_1_ * 1)

Ldi R26,$60

Ld R24,X

Clr R25

Ver. 1.11.6.3 BASCOM-AVR Page 321 of 420

Add zl,r24
; add to address of jump table

Adc zh,r25

Ijmp ; jump !!!

ON_1_:

Rjmp L1

Rjmp L2

ON_1_EXIT:

As you can see a jump is used to call the routine. Therefore the return
address is first saved on the stack.

Example
Dim X As Byte
X = 2 'assign a variable
interrupt
On X Gosub Lbl1 , Lbl2 , Lbl3 'jump to label lbl3
X = 0
On X Goto Lbl1 , Lbl2 , Lbl3
END

lbl3:
 Print "lbl3"
Return

Lbl1:
Print "lbl1"

Lbl2:
Print "lbl2"

OPEN

Action
Opens a device.

Syntax
OPEN "device" for MODE As #channel
CLOSE #channel

Ver. 1.11.6.3 BASCOM-AVR Page 322 of 420

Remarks
device The default device is COM1 and you don't need to open a channel to use

INPUT/OUTPUT on this device.
With the implementation of the software UART, the compiler must know to
which pin/device you will send/receive the data.
So that is why the OPEN statement must be used. It tells the compiler
about the pin you use for the serial input or output and the baud rate you
want to use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stopbits.

The format for COM1 is : COM1:speed, where the speed is optional and
will override the compiler settings for the speed.

The format for the software UART is:
COMpin:speed,8,N,stopbits[,INVERTED]
Where pin is the name of the PORT-pin.
Speed must be specified and stop bits can be 1 or 2.
7 bit data or 8 bit data may be used.
For parity N, O or E can be used.

An optional parameter ,INVERTED can be specified to use inverted RS-
232.
Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin
PORTD.1 for output with 9600 baud, 1 stop bit and with inverted RS-232.

MODE You can use BINARY or RANDOM for COM1, but for the software UART
pins, you must specify INPUT or OUTPUT.

channel The number of the channel to open. Must be a positive constant >0.

The statements that support the device are PRINT , INPUT , INPUTHEX ,
INKEY and WAITKEY

Every opened device must be closed using the CLOSE #channel statement.
Of course, you must use the same channel number.

The INPUT statement in combination with the software UART, will not echo
characters back because there is no default associated pin for this.

See also
CLOSE , CRYSTAL

Ver. 1.11.6.3 BASCOM-AVR Page 323 of 420

Example
'---
' (c) 2000 MCS Electronics
' OPEN.BAS
' demonstrates software UART
'---
$crystal = 10000000 'change to the value of
the XTAL you have installed

Dim B As Byte

'Optional you can fine tune the calculated bit delay
'Why would you want to do that?
'Because chips that have an internal oscillator may not
'run at the speed specified. This depends on the voltage, temp etc.
'You can either change $CRYSTAL or you can use
'BAUD #1,9610

'In this example file we use the DT006 from www.simmstick.com
'This allows easy testing with the existing serial port
'The MAX232 is fitted for this example.
'Because we use the hardware UART pins we MAY NOT use the hardware UART
'The hardware UART is used when you use PRINT, INPUT or other related statements
'We will use the software UART.
Waitms 100

'open channel for output
Open "comd.1:19200,8,n,1" For Output As #1
Print #1 , "serial output"

'Now open a pin for input
Open "comd.0:19200,8,n,1" For Input As #2
'since there is no relation between the input and output pin
'there is NO ECHO while keys are typed
Print #1 , "Number"
'get a number
Input #2 , B
'print the number
Print #1 , B

'now loop until ESC is pressed
'With INKEY() we can check if there is data available
'To use it with the software UART you must provide the channel
Do
 'store in byte
 B = Inkey(#2)
 'when the value > 0 we got something
 If B > 0 Then
 Print #1 , Chr(b) 'print the character
 End If
Loop Until B = 27

Close #2
Close #1

'OPTIONAL you may use the HARDWARE UART
'The software UART will not work on the hardware UART pins
'so you must choose other pins
'use normal hardware UART for printing
'Print B

'When you dont want to use a level inverter such as the MAX-232
'You can specify ,INVERTED :
'Open "comd.0:300,8,n,1,inverted" For Input As #2
'Now the logic is inverted and there is no need for a level converter
'But the distance of the wires must be shorter with this
End

Ver. 1.11.6.3 BASCOM-AVR Page 324 of 420

OUT

Action
Sends a byte to a hardware port or internal or external memory address.

Syntax
OUT address, value

Remarks
Address The address where to send the byte to in the

range of 0-FFFF hex.
Value The variable or value to send.

The OUT statement can write a value to any AVR memory location.
It is advised to use Words for the address. An integer might have a negative
value and will write of course to a word address. So it will be 32767 higher as
supposed. This because an integer has it's most significant bit set when it is
negative.
To write to XRAM locations you must enable the External RAM access in the
Compiler Chip Options.

See also
INP

Example
Out &H8000 , 1 'send 1 to the databus(d0-d7) at hex address 8000
End

Ver. 1.11.6.3 BASCOM-AVR Page 325 of 420

PEEK

Action
Returns the content of a register.

Syntax
var = PEEK(address)

Remarks
Var Numeric variable that is assigned with the content of the memory

location address
Address Numeric variable or constant with the address location.(0-31)
Peek() will read the content of a register.
Inp() can read any memory location

See also
POKE , CPEEK , INP , OUT

Example

Dim A As Byte
A = Peek(0) 'return the first byte of the internal memory (r0)
End

POKE

Action
Write a byte to an internal register.

Ver. 1.11.6.3 BASCOM-AVR Page 326 of 420

Syntax
POKE address , value

Remarks
Address Numeric variable with the address of the memory location

to set. (0-31)
Value Value to assign. (0-255)

See also
PEEK , CPEEK , INP , OUT

Example
Poke 1 , 1 'write 1 to R1
End

POPALL

Action
Restores all registers that might be used by BASCOM.

Syntax
POPALL

Remarks
When you are writing your own ASM routines and mix them with BASIC you
are unable to tell which registers are used by BASCOM because it depends
on the used statements and interrupt routines that can run on the background.
That is why Pushall saves all registers and POPALL restores all registers.

See also
PUSHALL

Ver. 1.11.6.3 BASCOM-AVR Page 327 of 420

POWERDOWN

Action
Put processor into power down mode.

Syntax
POWERDOWN

Remarks
In the power down mode, the external oscillator is stopped. The user can use
the WATCHDOG to power up the processor when the watchdog timeout
expires. Other possibilities to wake up the processor is to give an external
reset or to generate an external level triggered interrupt.

See also
IDLE , POWERSAVE

Example
Powerdown

POWERSAVE

Action
Put processor into power save mode.

Syntax
POWERSAVE

Ver. 1.11.6.3 BASCOM-AVR Page 328 of 420

Remarks
The POWERSAVE mode is only available on the 8535.

See also
IDLE, POWERDOWN

Example
Powersave

PRINT

Action
Send output to the RS-232 port.

Syntax
PRINT var ; " constant"

Remarks
Var The variable or constant to print.

You can use a semicolon (;) to print more than one variable at one line.
When you end a line with a semicolon, no linefeed will be added.

The PRINT routine can be used when you have a RS-232 interface on your
uP.

The RS-232 interface can be connected to a serial communication port of
your computer.
This way you can use a terminal emulator as an output device.

Ver. 1.11.6.3 BASCOM-AVR Page 329 of 420

You can also use the build in terminal emulator.

See also
INPUT ,OPEN , CLOSE , SPC

Example
'--
' (c) 1999-2000 MCS Electronics
'--
' file: PRINT.BAS
' demo: PRINT, HEX
'--
Dim A As Byte , B1 As Byte , C As Integer , S As String * 4
A = 1
Print "print variable a " ; A
Print 'new line
Print "Text to print." 'constant to print

B1 = 10
Print Hex(b1) 'print in hexa notation
C = &HA000 'assign value to c%
Print Hex(c) 'print in hex notation
Print C 'print in decimal
notation

C = -32000
Print C
Print Hex(c)
Rem Note That Integers Range From -32767 To 32768
End

PRINTBIN

Action
Print binary content of a variable to the serial port.

Syntax
PRINTBIN var [; varn]
PRINTBIN #channel, var [; varn]

Remarks

Ver. 1.11.6.3 BASCOM-AVR Page 330 of 420

var The variable which value is send to the serial port.
varn Optional variables to send.

The channel is optional and for use with OPEN and CLOSE statements.

PRINTBIN is equivalent to PRINT CHR(var);
When you use a Long for example, 4 bytes are printed.
Multiple variables may be sent. They must be separated by the ; sign.

See also
INPUTBIN

Example
Dim A(10) As Byte , C As Byte
For C = 1 To 10
 A(c) = A 'fill array
Next
Printbin A(1) 'print content of a(1). Not the whole array will
be sent!

End

PSET

Action

Sets or resets a single pixel.

Syntax

PSET X , Y, value

Remarks

Ver. 1.11.6.3 BASCOM-AVR Page 331 of 420

X The X location of the pixel. In range from 0-239.
Y The Y location of the pixel. In range from 0-63.
value The value for the pixel. 0 will clear the pixel. 1 Will set the pixel.

The PSET is handy to create a simple data logger or oscilloscope.

See also
SHOWPIC , CONFIG GRAPHLCD

Example
'---
' (c) 2001 MCS Electronics
' T6963C graphic display support demo
'---

'The connections of the LCD used in this demo
'LCD pin connected to
' 1 GND GND
 '2 GND GND
 '3 +5V +5V
 '4 -9V -9V potmeter
 '5 /WR PORTC.0
 '6 /RD PORTC.1
 '7 /CE PORTC.2
 '8 C/D PORTC.3
 '9 NC not conneted
 '10 RESET PORTC.4
 '11-18 D0-D7 PA
 '19 FS PORTC.5
 '20 NC not connected

'First we define that we use a graphic LCD
' Only 240*64 supported yet
Config Graphlcd = 240 * 64 , Dataport = Porta , Controlport = Portc , Ce = 2 , Cd =
3 , Wr = 0 , Rd = 1 , Reset = 4 , Fs = 5
'The dataport is the portname that is connected to the data lines of the LCD
'The controlport is the portname which pins are used to control the lcd
'CE, CD etc. are the pin number of the CONTROLPORT.
' For example CE =2 because it is connected to PORTC.2

'Dim variables (y not used)
Dim X As Byte , Y As Byte

'Clear the screen will both clear text and graph display
Cls
'Other options are :
' CLS TEXT to clear only the text display
' CLS GRAPH to clear only the graphical part

'locate works like the normal LCD locate statement
' LOCATE LINE,COLUMN LINE can be 1-8 and column 0-30
Locate 1 , 1

'Show some text
Lcd "MCS Electronics"
'And some othe text on line 2
Locate 2 , 1 : Lcd "T6963c support"

Ver. 1.11.6.3 BASCOM-AVR Page 332 of 420

'wait 1 sec
Wait 1

' draw a line using PSET X,Y, ON/OFF
' PSET on.off param is 0 to clear a pixel and any other value to turn it on
For X = 0 To 140
 Pset X , 20 , 255 ' set the pixel
Next

Wait 1

'Now it is time to show a picture
'SHOWPIC X,Y,label
'The label points to a label that holds the image data
Showpic 0 , 0 , Plaatje

Wait 1
Cls Text ' clear the text
End

'This label holds the mage data
Plaatje:
'$BGF will put the bitmap into the program at this location
$bgf "mcs.bgf"

'You could insert other picture data here

PULSEIN

Action
Returns the number of units between two occurrences of an edge of a pulse.

Syntax
PULSEIN var , PINX , PIN , STATE

Remarks
var A word variable that is assigned with the result.
PINX A PIN register like PIND
PIN The pin number(0-7) to get the pulse time of.
STATE May be 0 or 1.

0 means sample 0 to 1 transition.
1 means sample 1 to 0 transition.

ERR variable will be set to 1 in case of a time out. A time out will occur after

Ver. 1.11.6.3 BASCOM-AVR Page 333 of 420

65535 unit counts. With 10 uS units this will be after 655.35 mS.
You can add a bitwait statement to be sure that the PULSEIN statement will
wait for the start condition. But when using the BITWAIT statement and the
start condition will never occur, your program will stay in a loop.

The PULSIN statement will wait for the specified edge.
When state 0 is used, the routine will wait until the level on the specified input
pin is 0. Then a counter is started and stopped until the input level gets 1.
No hardware timer is used. A 16 bit counter is used. It will increase in 10 uS
units. But this depends on the XTAL. You can change the library routine to
adjust the units.

See also
PULSEOUT

ASM
The following ASM routine is called from mcs.lib
_pulse_in (calls _adjust_pin)
On entry ZL points to the PINx register , R16 holds the state, R24 holds the
pin number to sample.
On return XL + XH hold the 16 bit value.

Example
Dim w As Byte

pulsein w , PIND , 1 , 0 'detect time from 0 to 1

print w

end

PULSEOUT

Action
Generates a pulse on a pin of a PORT of specified period in 1uS units for 4
MHz.

Ver. 1.11.6.3 BASCOM-AVR Page 334 of 420

Syntax
PULSEOUT PORT , PIN , PERIOD

Remarks
PORT Name of the PORT. PORTB for example
PIN Variable or constant with the pin number (0-7).
PERIOD Number of periods the pulse will last. The periods are

in uS when an XTAL of 4 MHz is used.

The pulse is generated by toggling the pin twice, thus the initial state of the
pin determines the polarity.
The PIN must be configured as an output pin before this statement can be
used.

See also
PULSEIN

Example
Dim A As Byte
Config Portb = Output 'PORTB all output pins
Portb = 0 'all pins 0
Do
For A = 0 To 7
 Pulseout Portb , A , 60000 'generate pulse
 Waitms 250 'wait a bit
Next
Loop 'loop for ever

PUSHALL

Action
Saves all registers that might be used by BASCOM.

Syntax
PUSHALL

Ver. 1.11.6.3 BASCOM-AVR Page 335 of 420

Remarks
When you are writing your own ASM routines and mix them with BASIC you
are unable to tell which registers are used by BASCOM because it depends
on the used statements and interrupt routines that can run on the background.
That is why Pushall saves all registers. Use POPALL to restore the registers.

See also
POPALL

READ

Action
Reads those values and assigns them to variables.

Syntax
READ var

Remarks
Var Variable that is assigned data value.

It is best to place the DATA lines at the end of your program.

Difference with QB
It is important that the variable is of the same type as the stored data.

See also
DATA , RESTORE

Ver. 1.11.6.3 BASCOM-AVR Page 336 of 420

Example
'---
' READDATA.BAS
' Copyright 1999-2000 MCS Electronics
'---

Dim A As Integer , B1 As Byte , Count As Byte
Dim S As String * 15
Dim L As Long
Restore Dta1 'point to stored data
For Count = 1 To 3 'for number of data items
 Read B1 : Print Count ; " " ; B1
Next

Restore Dta2 'point to stored data
For Count = 1 To 2 'for number of data items
 Read A : Print Count ; " " ; A
Next

Restore Dta3
Read S : Print S
Read S : Print S

Restore Dta4
Read L : Print L 'long type

End

Dta1:
Data &B10 , &HFF , 10
Dta2:
Data 1000% , -1%

Dta3:
Data "Hello" , "World"
'Note that integer values (>255 or <0) must end with the %-sign
'also note that the data type must match the variable type that is
'used for the READ statement

Dta4:
Data 123456789&
'Note that LONG values must end with the &-sign
'Also note that the data type must match the variable type that is used
'for the READ statement

READEEPROM

Action
Reads the content from the DATA EEPROM and stores it into a variable.

Syntax
READEEPROM var , address

Ver. 1.11.6.3 BASCOM-AVR Page 337 of 420

Remarks
Var The name of the variable that must be stored
Address The address in the EEPROM where the data must be read from.

This statement is provided for compatibility with BASCOM-8051.
You can also use :
Dim V as Eram Byte 'store in EEPROM
Dim B As Byte 'normal variable
B = 10
V = B 'store variable in EEPROM
B = V 'read from EEPROM
When you use the assignment version, the datatypes must be equal!

According to a datasheet from ATMEL, the first location in the EEPROM with
address 0, can be overwritten during a reset so don't use it.

You may also use ERAM variables as indexes. Like :
Dim ar(10) as Eram Byte

When you omit the address label in consecutive reads, you must use a new
READEEPROM statement. It will not work in a loop:
Readeeprom B , Label1
Print B
 Do
 Readeeprom B
 Print B Loop
Until B = 5
This will not work since there is no pointer maintained. The way it will work :
ReadEEprom B , Label1 ‘ specify label
ReadEEPROM B ‘ read next address in EEPROM
ReadEEPROM B ‘ read next address in EEPROM

Ver. 1.11.6.3 BASCOM-AVR Page 338 of 420

See also
WRITEEEPROM , $EEPROM

ASM
NONE

Example
Dim B As Byte
Writeeeprom B , 0 'store at first position
Readeeprom B , 0 'read byte back

Example 2
'---
' EEPROM2.BAS
' This example shows how to use labels with READEEPROM
'---
'first dimension a variable
Dim B As Byte
Dim Yes As String * 1

'Usage for readeeprom and writeeprom :
'readeeprom var, address

'A new option is to use a label for the address of the data
'Since this data is in an external file and not in the code the eeprom data
'should be specified first. This in contrast with the normal DATA lines which must
'be placed at the end of your program!!

'first tell the compiler that we are using EEPROM to store the DATA
$eeprom
'specify a label
label1:
Data 1 , 2 , 3 , 4 , 5
Label2:
Data 10 , 20 , 30 , 40 , 50

'Switch back to normal data lines in case they are used
$data

'All the code above does not generate real object code
'It only creates a file with the EEP extension

'Use the new label option
Readeeprom B , Label1
Print B 'prints 1
'Succesive reads will read the next value
'But the first time the label must be specified so the start is known
Readeeprom B
Print B 'prints 2

Readeeprom B , Label2
Print B 'prints 10
Readeeprom B
Print B 'prints 20

'And it works for writing too :
'but since the programming can interfere we add a stop here
Input "Ready?" , Yes
B = 100
Writeeeprom B , Label1
B = 101
Writeeeprom B

'read it back
Readeeprom B , Label1
Print B 'prints 1

Ver. 1.11.6.3 BASCOM-AVR Page 339 of 420

'Succesive reads will read the next value
'But the first time the label must be specified so the start is known
Readeeprom B
Print B 'prints 2

End

READMAGCARD

Action
Read data from a magnetic card.

Syntax
Readmagcard var , count , 5|7

Remarks
Var A byte array the receives the data.
Count A byte variable that returns the number of bytes read.
5|7 A numeric constant that specifies if 5 or 7 bit coding is used.

There can be 3 tracks on a magnetic card.
Track 1 strores the data in 7 bit including the parity bit. This is handy to store
alpha numeric data.
On track 2 and 3 the data is tored with 5 bit coding.
The ReadMagCard routine works with ISO7811-2 5 and 7 bit decoding.
The returned numbers for 5 bit coding are:
Returned number ISO characterT
0 0
1 1
2 2
3 3
4 4

Ver. 1.11.6.3 BASCOM-AVR Page 340 of 420

5 5
6 6
7 7
8 8
9 9
10 hardware control
11 start byte
12 hardware control
13 separator
14 hardware control
15 stop byte

Example
'--
' (c) 2000 MCS Electronics
' MAGCARD.BAS
' This example show you how to read data from a magnetic card
'It was tested on the DT006 SimmStick.
'--
'[reserve some space]
Dim Ar(100) As Byte , B As Byte , A As Byte

'the magnetic card reader has 5 wires
'red - connect to +5V
'black - connect to GND
'yellow - Card inserted signal CS
'green - clock
'blue - data

'You can find out for your reader which wires you have to use by connecting +5V
'And moving the card through the reader. CS gets low, the clock gives a clock pulse of
equal pulses
'and the data varies
'I have little knowledge about these cards and please dont contact me about magnectic
readers
'It is important however that you pull the card from the right direction as I was
doing it wrong for
'some time :-)
'On the DT006 remove all the jumpers that are connected to the LEDs

'[We use ALIAS to specify the pins and PIN register]
_mport Alias Pinb 'all pins are connected
to PINB
_mdata Alias 0 'data line (blue)
PORTB.0
_mcs Alias 1 'CS line (yellow)
PORTB.1
_mclock Alias 2 'clock line (green)
PORTB.2

Config Portb = Input 'we only need bit 0,1
and 2 for input
Portb = 255 'make them high

Do
 Print "Insert magnetic card" 'print a message

Ver. 1.11.6.3 BASCOM-AVR Page 341 of 420

 Readmagcard Ar(1) , B , 5 'read the data
 Print B ; " bytes received"
 For A = 1 To B
 Print Ar(a); 'print the bytes
 Next
 Print
Loop

'By sepcifying 7 instead of 5 you can read 7 bit data

REM

Action
Instruct the compiler that comment will follow.

Syntax
REM or '

Remarks
You can and should comment your program for clarity and your later sanity.
You can use REM or ' followed by your comment.
All statements after REM or ' are treated as comments so you cannot
use statements on the same line after a REM statement.

Block comments can be used too:
'(start block comment
print "This will not be compiled
') end block comment

Example
REM TEST.BAS version 1.00

PRINT a ' " this is comment : PRINT " hello"

 ^--- this will not be executed!

Ver. 1.11.6.3 BASCOM-AVR Page 342 of 420

RESET

Action
Reset a bit to zero.

Syntax
RESET bit
RESET var.x

Remarks
bit Can be a SFR such as PORTB.x, or any bit variable where x=0-7.
var Can be a byte, integer word or long variable.
x Constant of variable to reset.(0-7) for bytes and (0-15) for Integer/Word.

For longs(0-31)

See also
SET

Example
Dim b1 as bit, b2 as byte, I as Integer
Reset Portb.3 'reset bit 3 of port B
Reset B1 'bitvariable
Reset B2.0 'reset bit 0 of
bytevariable b2
Reset I.15 'reset MS bit from I
End

RESTORE

Action
Allows READ to reread values in specified DATA statements by setting data
pointer to beginning of data statement.

Ver. 1.11.6.3 BASCOM-AVR Page 343 of 420

Syntax
RESTORE label

Remarks
label The label of a DATA statement.

See also
DATA , READ , LOOKUP

Example
'---
' READDATA.BAS
' Copyright 1999-2000 MCS Electronics
'---

Dim A As Integer , B1 As Byte , Count As Byte
Dim S As String * 15
Dim L As Long
Restore Dta1 'point to stored data
For Count = 1 To 3 'for number of data items
 Read B1 : Print Count ; " " ; B1
Next

Restore Dta2 'point to stored data
For Count = 1 To 2 'for number of data items
 Read A : Print Count ; " " ; A
Next

Restore Dta3
Read S : Print S
Read S : Print S

Restore Dta4
Read L : Print L 'long type

End

Dta1:
Data &B10 , &HFF , 10
Dta2:
Data 1000% , -1%

Dta3:
Data "Hello" , "World"
'Note that integer values (>255 or <0) must end with the %-sign
'also note that the data type must match the variable type that is
'used for the READ statement

Dta4:
Data 123456789&
'Note that LONG values must end with the &-sign
'Also note that the data type must match the variable type that is used
'for the READ statement

Ver. 1.11.6.3 BASCOM-AVR Page 344 of 420

RETURN

Action
Return from a subroutine.

Syntax
RETURN

Remarks
Subroutines must be ended with a related RETURN statement.
Interrupt subroutines must also be terminated with the Return statement.

See also
GOSUB

Example
Dim Result As Byte , Y As Byte
Gosub Pr 'jump to subroutine
Print Result 'print result
End 'program ends

Pr: 'start subroutine with label
 Result = 5 * Y 'do something stupid
 Result = Result + 100 'add something to it
Return 'return

RIGHT

Action
Return a specified number of rightmost characters in a string.

Ver. 1.11.6.3 BASCOM-AVR Page 345 of 420

Syntax
var = RIGHT(var1 ,n)

Remarks
var The string that is assigned.
Var1 The source string.
st The number of bytes to copy from the right of the string.

See also
LEFT , MID

Example
Dim S As String * 15 , Z As String * 15
S = "ABCDEFG"
Z = Right(s , 2)
Print Z 'FG
End

RND

Action
Returns a random number.

Syntax
var = RND(limit)

Remarks
Limit Word that limits the returned random number.
Var The variable that is assigned with the random number.

The RND() function returns an Integer/Word and needs an internal storage of
2 bytes. (___RSEED). Each new call to Rnd() will give a new positive random
number.

Ver. 1.11.6.3 BASCOM-AVR Page 346 of 420

Notice that it is a software based generated number. And each time you will
restart your program the same sequence will be created.

See also
NONE

Example
Dim I As Integer
Do
 I = Rnd(100) 'get random number from 0-99
 Print I
 Waitms 100
Loop
End

ROTATE

Action
Rotate all bits one place to the left or right.

Syntax
ROTATE var , LEFT/RIGHT [, shifts]

Remarks
Var Byte, Integer/Word or Long variable.
Shifts The number of shifts to perform.

The ROTATE statement rotates all the bits in the variable to the left or right.
All bits are preserved so no bits will be shifted out of the variable.
This means that after rotating a byte variable with a value of 1, eight times the
variable will be unchanged.
When you want to shift out the MS bit or LS bit, use the SHIFT statement.

See also

Ver. 1.11.6.3 BASCOM-AVR Page 347 of 420

SHIFT , SHIFTIN , SHIFTOUT

Example
Dim a as Byte
a = 128
Rotate A , Left , 2
Print a '2
End

RTRIM

Action
Returns a copy of a string with trailing blanks removed

Syntax
var = RTRIM(org)

Remarks
var String that is assigned with the result.
org The string to remove the trailing spaces from

See also
TRIM , LTRIM

ASM
NONE

Example
Dim S As String * 6
S = " AB "
Print Ltrim(s)
Print Rtrim(s)
Print Trim(s)
End

Ver. 1.11.6.3 BASCOM-AVR Page 348 of 420

SELECT-CASE-END SELECT

Action
Executes one of several statement blocks depending on the value of an
expression.

Syntax
SELECT CASE var
 CASE test1 : statements
 [CASE test2 : statements]
 CASE ELSE : statements
END SELECT

Remarks
Var Variable. to test
Test1 Value to test for.
Test2 Value to test for.

You can test for conditions to like:
CASE IS > 2 :
Another option is to test for a range :
CASE 2 TO 5 :

See also
IF THEN

Ver. 1.11.6.3 BASCOM-AVR Page 349 of 420

Example
Dim X As Byte

Do
 Input "X ? " , X
 Select Case X
 Case 1 To 3 : Print "1 , 2 or 3 will be ok"
 Case 4 : Print "4"
 Case Is > 10 : Print ">10"
 Case Else : Print "no"
 End Select
Loop

End

SET

Action
Set a bit to the value one.

Syntax
SET bit
SET var.x

Remarks
Bit Bitvariable.
Var A byte, integer, word or long variable.
X Bit of variable (0-7) to set. (0-15 for Integer/Word) and

(0-31) for Long

See also
RESET

Example
Dim B1 As Bit , B2 As Byte , C As Word , L As Long
Set Portb.1 'set bit 1 of port B
Set B1 'bit variable
Set B2.1 'set bit 1 of var b2
Set C.15 'set highest bit of Word
Set L.31 'set MS bit of LONG

Ver. 1.11.6.3 BASCOM-AVR Page 350 of 420

End

SHIFT

Action
Shift all bits one place to the left or right.

Syntax
SHIFT var , LEFT/RIGHT [, shifts]

Remarks
Var Byte, Integer/Word or Long variable.
Shifts The number of shifts to perform.

The SHIFT statement rotates all the bits in the variable to the left or right.

When shifting LEFT the most significant bit, will be shifted out of the variable.
The LS bit becomes zero. Shifting a variable to the left, multiplies the variable
with a value of two.

When shifting to the RIGHT, the least significant bit will be shifted out of the
variable. The MS bit becomes zero. Shifting a variable to the right, divides the
variable by two.

See also
ROTATE , SHIFTIN , SHIFTOUT

Example
Dim a as Byte
a = 128
Shift A , Left , 2
Print a '0
End

Ver. 1.11.6.3 BASCOM-AVR Page 351 of 420

SHIFTCURSOR

Action
Shift the cursor of the LCD display left or right by one position.

Syntax
SHIFTCURSOR LEFT / RIGHT

See also
SHIFTLCD

Example
LCD "Hello"

SHIFTCURSOR LEFT

End

SHIFTIN

Action
Shifts a bit stream into a variable.

Syntax
SHIFTIN pin , pclock , var , option [, bits , delay]

Remarks

Ver. 1.11.6.3 BASCOM-AVR Page 352 of 420

Pin The port pin which serves as an input.PINB.2 for example
Pclock The port pin which generates the clock.
Var The variable that is assigned.
Option Option can be :

0 – MSB shifted in first when clock goes low
1 – MSB shifted in first when clock goes high
2 – LSB shifted in first when clock goes low
3 – LSB shifted in first when clock goes high
Adding 4 to the parameter indicates that an external clock signal is used
for the clock. In this case the clock will not be generated. So using 4 will
be the same a 0 (MSB shifted in first when clock goes low) but the clock
must be generated by an external signal.
4 – MSB shifted in first when clock goes low with ext. clock
5 – MSB shifted in first when clock goes high with ext. clock
6 – LSB shifted in first when clock goes low with ext. clock
7 – LSB shifted in first when clock goes high with ext. clock

Bits Optional number of bits to shift in. Maximum 255.
Delay Optional delay in uS. When you specify the delay, the number of bits

must also be specified. When the number of bits is default you can use
NULL for the BITS parameter.

If you do not specify the number of bits to shift, the number of shifts will
depend on the type of the variable.
When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur.
For a Long and Single 32 shifts will occur.

The SHIFTIN routine can be used to interface with all kind of chips.
The PIN is normally connected with the output of chip that will send
information.
The PCLOCK pin can be used to clock the bits as a master, that is the clock
pulses will be generated. Or it can sample a pin that generates these pulses.
The VARIABLE is a normal BASIC variable. And may be of any type except
for BIT. The data read from the chip is stored in this variable.
The OPTIONS is a constant that specifies the direction of the bits. The chip
that outputs the data may send the LS bit first or the MS bit first. It also
controls on which edge of the clock signal the data must be stored.
When you add 4 to the constant you tell the compiler that the clock signal is
not generated but that there is an external clock signal.

Ver. 1.11.6.3 BASCOM-AVR Page 353 of 420

The number of bits may be specified. You may omit this info. In that case the
number of bits of the element data type will be used.
The DELAY normally consists of 2 NOP instructions. When the clock is too
fast you can specify a delay time(in uS).

See also
SHIFTOUT , SHIFT

Example
Dim A As Byte
Config Pinb.0 = Input ' set pin to input
Config Pinb.1 = Output
Portb.0 = 1
Shiftin Pinb.0 , Portb.1 , A , 4 , 4 , 10 'shiftin 4 bits and use
external clock
Shift A , Right , 4 'adjust
Shiftin Pinb.0 , Portb.1 , A 'read 8 bits

End

SHIFTOUT

Action
Shifts a bit stream out of a variable into a port pin .

Syntax
SHIFTOUT pin , pclock , var , option [, bits , delay]

Remarks
Pin The port pin which serves as a data output.
Pclock The port pin which generates the clock.
Var The variable that is shifted out.
Option Option can be :

0 – MSB shifted out first when clock goes low
1 – MSB shifted out first when clock goes high

Ver. 1.11.6.3 BASCOM-AVR Page 354 of 420

2 – LSB shifted out first when clock goes low
3 – LSB shifted out first when clock goes high

Bits Optional number of bits to shift out.
Delay Optional delay in uS. When you specify the delay, the number

of bits must also be specified. When the default must be used
you can also use NULL for the number of bits.

If you do not specify the number of bits to shift, the number of shifts will
depend on the type of the variable.
When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur.
For a Long and Single 32 shifts will occur.

The SHIFTIN routine can be used to interface with all kind of chips.
The PIN is normally connected with the input of a chip that will receive
information.
The PCLOCK pin is used to clock the bits out of the chip.
The VARIABLE is a normal BASIC variable. And may be of any type except
for BIT. The data that is stored in the variable is sent with PIN.
The OPTIONS is a constant that specifies the direction of the bits. The chip
that reads the data may want the LS bit first or the MS bit first. It also controls
on which edge of the clock signal the data is sent to PIN.
The number of bits may be specified. You may omit this info. In that case the
number of bits of the element data type will be used.
The DELAY normally consists of 2 NOP instructions. When the clock is too
fast you can specify a delay time(in uS).

See also
SHIFTIN , SHIFT

Example
Dim a as byte
Config Pinb.0 = Output
Config Pinb.1 = Input
Shiftout Portb.0 , Portb.1 , A , 3 , 4 , 10 'shiftout 4 bits
Shiftin Pinb.0 , Portb.1 , A , 3 'shiftout 8 bits
End

Ver. 1.11.6.3 BASCOM-AVR Page 355 of 420

SHIFTLCD

Action
Shift the LCD display left or right by one position.

Syntax
SHIFTLCD LEFT / RIGHT

Remarks
NONE

See also
SHIFTCURSOR

Example
Cls
Lcd "Very long text"
Shiftlcd Left
Wait 1
Shiftlcd Right
End

SHOWPIC

Action

Shows a BGF file on the graphic display

Syntax

SHOWPIC x, y , label

Ver. 1.11.6.3 BASCOM-AVR Page 356 of 420

Remarks

Showpic can display a converted BMP file. The BMP must be converted into a
BGF file with the Tools Grahic Converter.

The X and Y parameters specify where the picture must be displayed. X and
Y must be 0 or a multiple of 8. The picture height and width must also be a
multiple of 8.

The label tells the compiler where the graphic data is located. It points to a
label where you put the graphic data with the $BGF directive.

See also

PSET , $BGF , CONFIG GRAPHLCD

Example
'---
' (c) 2001 MCS Electronics
' T6963C graphic display support demo
'---

'The connections of the LCD used in this demo
'LCD pin connected to
' 1 GND GND
 '2 GND GND
 '3 +5V +5V
 '4 -9V -9V potmeter
 '5 /WR PORTC.0
 '6 /RD PORTC.1
 '7 /CE PORTC.2
 '8 C/D PORTC.3
 '9 NC not conneted
 '10 RESET PORTC.4
 '11-18 D0-D7 PA
 '19 FS PORTC.5
 '20 NC not connected

'First we define that we use a graphic LCD
' Only 240*64 supported yet
Config Graphlcd = 240 * 64 , Dataport = Porta , Controlport = Portc , Ce = 2 , Cd =
3 , Wr = 0 , Rd = 1 , Reset = 4 , Fs = 5
'The dataport is the portname that is connected to the data lines of the LCD
'The controlport is the portname which pins are used to control the lcd
'CE, CD etc. are the pin number of the CONTROLPORT.
' For example CE =2 because it is connected to PORTC.2

'Dim variables (y not used)
Dim X As Byte , Y As Byte

'Clear the screen will both clear text and graph display
Cls
'Other options are :
' CLS TEXT to clear only the text display
' CLS GRAPH to clear only the graphical part

'locate works like the normal LCD locate statement

Ver. 1.11.6.3 BASCOM-AVR Page 357 of 420

' LOCATE LINE,COLUMN LINE can be 1-8 and column 0-30
Locate 1 , 1

'Show some text
Lcd "MCS Electronics"
'And some othe text on line 2
Locate 2 , 1 : Lcd "T6963c support"

'wait 1 sec
Wait 1

' draw a line using PSET X,Y, ON/OFF
' PSET on.off param is 0 to clear a pixel and any other value to turn it on
For X = 0 To 140
 Pset X , 20 , 255 ' set the pixel
Next

Wait 1

'Now it is time to show a picture
'SHOWPIC X,Y,label
'The label points to a label that holds the image data
Showpic 0 , 0 , Plaatje

Wait 1
Cls Text ' clear the text
End

'This label holds the mage data
Plaatje:
'$BGF will put the bitmap into the program at this location
$bgf "mcs.bgf"

'You could insert other picture data here

Label:

$BGF "mcs.bgf" 'data will be inserted here

SOUND

Action
Sends pulses to a port pin.

Syntax
SOUND pin, duration, pulses

Remarks

Ver. 1.11.6.3 BASCOM-AVR Page 358 of 420

Pin Any I/O pin such as PORTB.0 etc.
Duration The number of pulses to send. Byte, integer/word or constant.
Pulses The time the pin is pulled low and high.

This is the value for a loop counter.

When you connect a speaker or a buzzer to a port pin (see hardware) , you
can use the SOUND statement to generate some tones.

The port pin is switched high and low for pulses times.
This loop is executed duration times.

The SOUND statement is not intended to generate accurate frequencies. Use
a TIMER to do that.

See also
NONE

Example
SOUND PORTB.1 , 10000, 10 'BEEP

End

SPACE

Action
Returns a string that consists of spaces.

Syntax
var = SPACE(x)

Ver. 1.11.6.3 BASCOM-AVR Page 359 of 420

Remarks
X The number of spaces.
Var The string that is assigned.
Using 0 for x will result in a string of 255 bytes because there is no check for a
zero length assign.

See also
STRING

Example
Dim s as String * 15, z as String * 15
s = Space(5)
Print " {" ;s ; " }" '{ }

Dim A as Byte
A = 3
S = Space(a)

End

SPC
Action
Prints the number of specified spaces.

Syntax
PRINT SPC(x)

Remarks
X The number of spaces to print.
Using 0 for x will result in a string of 255 bytes because there is no check for a
zero length assign.
SPC can be used with LCD too.
The difference with the SPACE function is that SPACE returns a number of

Ver. 1.11.6.3 BASCOM-AVR Page 360 of 420

spaces while SPC() can only be used with printing. Using SPACE() with
printing is also possible but it will use a temporary buffer while SPC does not
use a temporary buffer.

See also
SPACE

Example
Dim s as String * 15, z as String * 15

Print "{" ; SPC(5) ; "}" '{ }

LCD "{" ; SPC(5) ; "}" '{ }

SPIIN

Action
Reads a value from the SPI-bus.

Syntax
SPIIN var, bytes

Remarks
Var The variable which receives the value read from the SPI-bus.
Bytes The number of bytes to read.

See also
SPIOUT, SPIINIT, CONFIG SPI , SPIMOVE

Ver. 1.11.6.3 BASCOM-AVR Page 361 of 420

Example
Dim A(10) As Byte
Config Spi = Soft , Din = Pinb.0 , Dout = Portb.1 , Ss = Portb.2 , Clock = Portb.3
Spiinit
Spiin A(1) , 4 'read 4 bytes and store in a(1), a(2) , a(3) and a(4)

End

SPIINIT

Action
Initiate the SPI pins.

Syntax
SPIINIT

Remarks
After the configuration of the SPI pins, you must initialize the SPI pins to set
them for the right data direction. When the pins are not used by other
hardware/software, you only need to use SPIINIT once.
When other routines change the state of the SPI pins, use SPIINIT again
before using SPIIN and SPIOUT.

See also
SPIIN , SPIOUT

ASM
Calls _init_spi

Example
Dim A(10) As Byte
Config Spi = Soft , Din = Pinb.0 , Dout = Portb.1 , Ss = Portb.2 , Clock = Portb.3
Spiinit
Spiin A(1) , 4 'read 4 bytes and store in a(1), a(2) , a(3) and a(4)

End

Ver. 1.11.6.3 BASCOM-AVR Page 362 of 420

SPIMOVE

Action
Sends and receives a value or a variable to the SPI-bus.

Syntax
var = SPIMOVE(byte)

Remarks
Var The variable that is assigned with the received byte(s) from the SPI-

bus.
Byte The variable or constant whose content must be send to the SPI-

bus.

See also
SPIIN , SPIINIT , CONFIG SPI

Example
CONFIG SPI = SOFT, DIN = PINB.0, DOUT = PORTB.1, SS=PORTB.2, CLOCK =
PORTB.3

SPIINIT

Dim a(10) as Byte , X As Byte

SPIOUT a(1) , 5 'send 5 bytes

SPIOUT X , 1 'send 1 byte

A(1) = SpiMove(5) ' move 5 to SPI and store result in a(1)

End

Ver. 1.11.6.3 BASCOM-AVR Page 363 of 420

SPIOUT

Action
Sends a value of a variable to the SPI-bus.

Syntax
SPIOUT var , bytes

Remarks
var The variable whose content must be send to the SPI-bus.
bytes The number of bytes to send.

See also
SPIIN , SPIINIT , CONFIG SPI , SPIMOVE

Example
Dim A(10) As Byte
Config Spi = Soft , Din = Pinb.0 , Dout = Portb.1 , Ss = Portb.2 , Clock = Portb.3
Spiinit
Spiout A(1) , 4 'write 4 bytes a(1), a(2) , a(3) and a(4)

End

START

Action
Start the specified device.

Syntax
START device

Ver. 1.11.6.3 BASCOM-AVR Page 364 of 420

Remarks
Device TIMER0, TIMER1, COUNTER0 or COUNTER1, WATCHDOG,

AC (Analog comparator power) or ADC(A/D converter power)
.

You must start a timer/counter in order for an interrupt to occur (when the
external gate is disabled).

TIMER0 and COUNTER0 are the same device.
The AC and ADC parameters will switch power to the device and thus
enabling it to work.

See also
STOP

Example
'--
' ADC.BAS
' demonstration of GETADC() function for 8535 micro
'--
$regfile = "m163def.dat"

'configure single mode and auto prescaler setting
'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz
'The AUTO feature, will select the highest clockrate possible
Config Adc = Single , Prescaler = Auto
'Now give power to the chip
Start Adc

'With STOP ADC, you can remove the power from the chip
'Stop Adc

Dim W As Word , Channel As Byte

Channel = 0
'now read A/D value from channel 0
Do
 W = Getadc(channel)
 Print "Channel " ; Channel ; " value " ; W
 Incr Channel
 If Channel > 7 Then Channel = 0
Loop
End

'The new M163 has options for the reference voltage
'For this chip you can use the additional param :
'Config Adc = Single , Prescaler = Auto, Reference = Internal
'The reference param may be :
'OFF : AREF, internal reference turned off
'AVCC : AVCC, with external capacitor at AREF pin
'INTERNAL : Internal 2.56 voltage reference with external capacitor ar AREF pin

'Using the additional param on chip that do not have the internal reference will have
no effect.

Ver. 1.11.6.3 BASCOM-AVR Page 365 of 420

STCHECK

Action
Calls a routine to check for various stack overflows. This routine is intended
for debug purposes.

Syntax
STCHECK

Remarks
The different stack spaces used by BASCOM-AVR lead to lots of questions
about them.
The STCHECK routine can help to determine if the stack size are trashed by
your program. The program STACK.BAS is used to explain the different
settings.

Note that STCHECK should be removed form your final program. That is
once you tested your program and found out is works fine, you can remove
the call to STCHECK since it costs time and code space.

The settings used are :
HW stack 8
Soft stack 2
Frame size 14

Below is a part of the memory of the 90S2313 used for the example:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

 FR FR FR FR FR FR FR FR

FR FR FR FR FR FR YY YY SP SP SP SP SP SP SP SP

Ver. 1.11.6.3 BASCOM-AVR Page 366 of 420

Since the last memory in SRAM is DF, the hardware stack is occupied by D8-
DF(8 bytes)
When a call is made or a push is used the data is saved at the position the
hardware stack pointer is pointing to. After this the stack pointer is decreased.
A call uses 2 bytes so SP will be SP-2. (DF-2) =DD
When 8 bytes are stored the SP will point to D7. Another call or push will thus
destroy memory position D7 which is occupied by the soft stack.

The soft stack begins directly after the hardware stack and is also growing
down.
The Y pointer(r28+r29) is used to point to this data.
Since the Y pointer is decreased first and then the data is saved, the pointer
must point at start up to a position higher. That is D8, the end of the hardware
space.
St -y,r24 will point to D8-1=D7 and will store R24 at location D7.
Since 2 bytes were allocated in this example we use D7 and D6 to store the
data.
When the pointer is at D6 and another St -y,r24 is used, it will write to position
D5 which
is the end of the frame space that is used as temporarily memory.

The frame starts at C8 and ends at D5. Writing beyond will overwrite the soft
stack.
And when there is no soft stack needed, it will overwrite the hardware stack
space.

The map above shows FR(frame), YY(soft stack data) and SP(hardware stack
space)

How to determine the right values?
The stack check routine can be used to determine if there is an overflow.
It will check :
-if SP is below it's size. In this case below D8.
-if YY is below it’s size in this case when it is D5
-if the frame is above its size in this case D6

Ver. 1.11.6.3 BASCOM-AVR Page 367 of 420

When is YY(soft stack) used? When you use a LOCAL variable inside a SUB
or function. Each local variable will use 2 bytes.
When you pass variables to user Subroutines or functions it uses 2 bytes for
each parameter.

call mysub(x,y) will use 2 * 2 = 4 bytes.
local z as byte ' will use another 2 bytes

This space is freed when the routine ends.
But when you call another sub inside the sub, you need more space.
sub mysub(x as byte,y as byte)

call testsub(r as byte) ' we must add another 2 bytes

When you use empty(no params) call like :

call mytest() , No space is used.

When do you need frame space?
When ever you use a num<>string conversion routine like:
Print b (where b is a byte variable)

Bytes will use 4 bytes max (123+0)
Integer will use 7 bytes max (-12345+0)c
Longs will use 16 bytes max
And the single will use 24 bytes max

When you add strings and use the original the value must be remembered by
the compiler.
Consider this :
s$ = "abcd" + s$
Here you give s$ a new value. But you append the original value so the
original value must be remembered until the operation has completed. This
copy is stored in the frame too.
So when string s$ was dimmed with a length of 20, you need a frame space
of 20+1(null byte)

Ver. 1.11.6.3 BASCOM-AVR Page 368 of 420

When you pass a variable by VALUE (BYVAL) then you actually pass a copy
of the variable.
When you pass a byte, 1 byte of frame space is used, a long will take 4 bytes.
When you use a LOCAL LONG, you also need 4 bytes of frame space to
store the local long.

The frame space is reused and so is the soft stack space and hardware stack
space.
So the hard part is to determine the right sizes!

The stack check routine must be called inside the deepest nested sub or
function.

Gosub test

test:
 gosub test1
return

test1:
 ' this is the deepest level so check the stack here
 stcheck
return

Stcheck will use 1 variable named ERROR. You must dimension it yourself.
Dim Error As Byte

Error will be set to :
1: if hardware stack grows down into the soft stack space
2: if the soft stack space grows down into the frame space
3: if the frame space grows up into the soft stack space.

The last 2 errors are not necessarily bad when you consider that when the

Ver. 1.11.6.3 BASCOM-AVR Page 369 of 420

soft stack is not used for passing data, it may be used by the frame space to
store data. Confusing right.?

ASM
Routines called by STCHECK :
_StackCheck : uses R24 and R25 but these are saved and restored.
Because the call uses 2 bytes of hardware stack space and the saving of R24
and R25 also costs 2 bytes, it uses 4 more bytes of hardware stack space
than your final program would do that f course does not need to use
STCHECK.

Example
Here is the stack.bas sample that can be found in the samples dir.
It uses conditional compilation so you can test the various errors.

'this sample shows how to check for the stack sizes

'note that the called routine (_STACKCHECK) will use 4
bytes
'ofhardware stack space
'So when your program works, you may subtract the 4 bytes
of the needed hardware stack size
'in your final program that does not include the STCHECK

'testmode =0 will work
'testmode =1 will use too much hardware stack
'testmode =2 will use too much soft stack space
'testmode =3 will use too much frame space
Const Testmode = 0
'compile and test the program with testmode from 0-3

'you need to dim the ERROR byte !!
Dim Error As Byte

#if Testmode = 2
 Declare Sub Pass(z As Long , Byval K As Long)
#else
 Declare Sub Pass()
#endif

Dim I As Long
I = 2

Ver. 1.11.6.3 BASCOM-AVR Page 370 of 420

Print I
'call the sub in your code at the deepest level
'normally within a function or sub

#if Testmode = 2
 Call Pass(i , 1)
#else
 Call Pass()
#endif
End

#if Testmode = 2
 Sub Pass(z As Long , Byval K As Long)
#else
 Sub Pass()
#endif
 #if Testmode = 3
 Local S As String * 13
 #else
 Local S As String * 8
 #endif

 Print I
 Gosub Test
End Sub

Test:
#if Testmode = 1
 push r0 ; eat some hardware stack space
 push r1
 push r2
#endif

 ' *** here we call the routine ***
 Stcheck
 ' *** when error <>0 then there is a problem ***
#if Testmode = 1
 pop r2
 pop r1
 pop r0
#endif

Return

Ver. 1.11.6.3 BASCOM-AVR Page 371 of 420

STOP

Action
Stop the specified device. Or stop the program

Syntax
STOP device
STOP

Remarks
Device TIMER0, TIMER1, COUNTER0 or COUNTER1, WATCHDOG,

AC (Analog comparator power) or ADC(A/D converter power)
.

The single STOP statement will end your program by generating a never
ending loop. When END is used it will have the same effect but in addition it
will disable all interrupts.

The STOP statement with one of the above parameters, will stop the specified
device.

TIMER0 and COUNTER0 are the same device.
The AC and ADC parameters will switch power off the device to disable it and
thus save power.

See also
START , END

Example
'--
' ADC.BAS
' demonstration of GETADC() function for 8535 micro
'--
$regfile = "m163def.dat"

'configure single mode and auto prescaler setting
'The single mode must be used with the GETADC() function

Ver. 1.11.6.3 BASCOM-AVR Page 372 of 420

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz
'The AUTO feature, will select the highest clockrate possible
Config Adc = Single , Prescaler = Auto
'Now give power to the chip
Start Adc

'With STOP ADC, you can remove the power from the chip
'Stop Adc

Dim W As Word , Channel As Byte

Channel = 0
'now read A/D value from channel 0
Do
 W = Getadc(channel)
 Print "Channel " ; Channel ; " value " ; W
 Incr Channel
 If Channel > 7 Then Channel = 0
Loop
End

'The new M163 has options for the reference voltage
'For this chip you can use the additional param :
'Config Adc = Single , Prescaler = Auto, Reference = Internal
'The reference param may be :
'OFF : AREF, internal reference turned off
'AVCC : AVCC, with external capacitor at AREF pin
'INTERNAL : Internal 2.56 voltage reference with external capacitor ar AREF pin

'Using the additional param on chip that do not have the internal reference will have
no effect.

STR

Action
Returns a string representation of a number.

Syntax
var = Str(x)

Remarks
var A string variable.
X A numeric variable.

The string must be big enough to store the result.

Ver. 1.11.6.3 BASCOM-AVR Page 373 of 420

See also
VAL , HEX , HEXVAL , MCSBYTE , BIN

Difference with QB
In QB STR() returns a string with a leading space. BASCOM does not return a
leading space.

Example
Dim A As Byte , S As String * 10
A = 123
S = Str(a)
Print S ' 123
End

STRING

Action
Returns a string consisting of m repetitions of the character with ASCII
Code n.

Syntax
var = STRING(m ,n)

Remarks
Var The string that is assigned.
N The ASCII-code that is assigned to the string.
M The number of characters to assign.
Since a string is terminated by a 0 byte, you can't use 0 for n.
Using 0 for m will result in a string of 255 bytes, because there is no check on
a length assign of 0.

Ver. 1.11.6.3 BASCOM-AVR Page 374 of 420

See also
SPACE

Example
Dim S As String * 15
S = String(5 , 65)
Print S 'AAAAA
End

SUB

Action
Defines a Sub procedure.

Syntax
SUB Name[(var1 , …)]

Remarks
Name Name of the sub procedure, can be any non-reserved word.
var1 The name of the parameter.

You must end each subroutine with the END SUB statement.
You can copy the DECLARE SUB line and remove the DECLARE statement.
This ensures that you have the right parameters.

See the DECLARE SUB topic for more details.

SWAP

Action

Ver. 1.11.6.3 BASCOM-AVR Page 375 of 420

Exchange two variables of the same type.

Syntax
SWAP var1, var2

Remarks
var1 A variable of type bit, byte, integer, word, long or string.
var2 A variable of the same type as var1.

After the swap, var1 will hold the value of var2 and var2 will hold the value of
var1.

Example
Dim A As Integer , B1 As Integer
A = 1 : B1 = 2 'assign two integers
Swap A , B1 'swap them
Print A ; B1 'prints 21

End

THIRDLINE

Action
Reset LCD cursor to the third line.

Syntax
THIRDLINE

Remarks
NONE

Ver. 1.11.6.3 BASCOM-AVR Page 376 of 420

See also
UPPERLINE , LOWERLINE , FOURTHLINE

Example
Dim A As Byte
A = 255
Cls
Lcd A
Thirdline
Lcd A
Upperline
End

TIME$

Action
Internal variable that holds the time.

Syntax
TIME$ = "hh:mm:ss"
var = TIME$

Remarks
The TIME$ variable is used in combination with the CONFIG CLOCK
directive.
The CONFIG CLOCK statement will use the TIMER0 or TIMER2 in async
mode to create a 1 second interrupt. In this interrupt routine the _Sec, _Min
and _Hour variables are updated. The time format is 24 hours format.
When you assign TIME$ to a string variable these variables are assigned to
the TIME$ variable.
When you assign the TIME$ variable with a constant or other variable, the
_sec, _Hour and _Min variables will be changed to the new time.
The only difference with QB/VB is that all digits must be provided when
assigning the time. This is done for minimal code. You can change this
behavior of course.

Ver. 1.11.6.3 BASCOM-AVR Page 377 of 420

ASM
The following asm routines are called from mcs.lib.
When assiging TIME$: _set_time (calls _str2byte)
When reading TIME$: _make_dt (calls _byte2str)

See also
DATE$, CONFIG CLOCK

Example
'--
' MEGACLOCK.BAS
' (c) 2000-2001 MCS Electronics
'--
'This example shows the new TIME$ and DATE$ reserved variables
'With the 8535 and timer2 or the Mega103 and TIMER0 you can
'easily implement a clock by attaching a 32.768 KHz xtal to the timer
'And of course some BASCOM code

'This example is written for the STK300 with M103
Enable Interrupts

'[configure LCD]
$lcd = &HC000 'address for E and RS
$lcdrs = &H8000 'address for only E
Config Lcd = 20 * 4 'nice display from bg micro
Config Lcdbus = 4 'we run it in bus mode and I hooked up only
db4-db7
Config Lcdmode = Bus 'tell about the bus mode

'[now init the clock]
Config Clock = Soft 'this is how simple it is
'The above statement will bind in an ISR so you can not use the TIMER anymore!
'For the M103 in this case it means that TIMER0 can not be used by the user anymore

'assign the date to the reserved date$
'The format is MM/DD/YY
Date$ = "11/11/00"

'assign the time, format in hh:mm:ss military format(24 hours)
'You may not use 1:2:3 !! adding support for this would mean overhead
'But of course you can alter the library routines used

Time$ = "02:20:00"

'clear the LCD display
Cls

Do
 Home 'cursor home
 Lcd Date$; " " ; Time$ 'show the date and time
Loop

'The clock routine does use the following internal variables:
'_day , _month, _year , _sec, _hour, _min
'These are all bytes. You can assign or use them directly
_day = 1
'For the _year variable only the year is stored, not the century
End

Ver. 1.11.6.3 BASCOM-AVR Page 378 of 420

TOGGLE

Action
Toggles the state of an output pin or bit variable.

Syntax
TOGGLE pin

Remarks
pin Any port pin like PORTB.0 or bit variable. A port poin must be

configured as an output pin before TOGGLE can be used.

With TOGGLE you can simply invert the output state of a port pin.
When the pin is driving a relais for example and the relais is OFF, one
TOGGLE statement will turn the relais ON. Another TOGGLE will turn the
relais OFF again.

See also
CONFIG PORT

ASM
NONE

Example
Dim Var As Byte
CONFIG PINB.0 = OUTPUT ' portB.0 is an output now
TOGGLE PORTB.0 'toggle state
WAITMS 1000cho 'wait for 1 sec
TOGGLE PORTB.0 'toggle state again

Ver. 1.11.6.3 BASCOM-AVR Page 379 of 420

TRIM

Action
Returns a copy of a string with leading and trailing blanks removed

Syntax
var = TRIM(org)

Remarks
Var String that receives the result.
Org The string to remove the spaces from

See also
RTRIM , LTRIM

ASM
NONE

Example
Dim S As String * 6
S = " AB "
Print Ltrim(s)
Print Rtrim(s)
Print Trim(s)
End

UCASE
Action
Converts a string in to all upper case characters.

Syntax

Ver. 1.11.6.3 BASCOM-AVR Page 380 of 420

Target = Ucase(source)

Remarks
Target The string that is assigned with the upper case string of string target.
Source The source string.

See also
LCASE

ASM
The following ASM routines are called from MCS.LIB : _UCASE
X must point to the target string, Z must point to the source string.
The generated ASM code : (can be different depending on the micro used)
;##### Z = Ucase(s)
Ldi R30,$60
Ldi R31,$00 ; load constant in register
Ldi R26,$6D
Rcall _Ucase

Example
Dim S As String * 12 , Z As String * 12
S = "Hello World"
Z = Lcase(s)
Print Z
Z = Ucase(s)
Print Z
End

UPPERLINE

Action
Reset LCD cursor to the upperline.

Ver. 1.11.6.3 BASCOM-AVR Page 381 of 420

Syntax
UPPERLINE

Remarks
NONE

See also
LOWERLINE , THIRDLINE , FOURTHLINE

Example
Dim A As Byte
A = 255
Cls
Lcd A
Thirdline
Lcd A
Upperline
End

VAL

Action
Converts a string representation of a number into a number.

Syntax
var = Val(s)

Remarks
Var A numeric variable that is assigned with the value of s.
S Variable of the string type.

Ver. 1.11.6.3 BASCOM-AVR Page 382 of 420

See also
STR , HEXVAL , HEX , BIN

Example
Dim a as byte, s As String * 10
s = "123"
a = Val(s) 'convert string
Print A ' 123
End

VARPTR

Action
Retrieves the memory-address of a variable.

Syntax
var = VARPTR(var2)

Remarks
Var The variable that receives the address of var2.
Var2 A variable to retrieve the address from.

See also
NONE

Example
Dim W As Byte
Print Hex(varptr(w)) ' 0060

Ver. 1.11.6.3 BASCOM-AVR Page 383 of 420

WAIT

Action
Suspends program execution for a given time.

Syntax
WAIT seconds

Remarks
seconds The number of seconds to wait.

No accurate timing is possible with this command.
When you use interrupts, the delay may be extended.

See also
DELAY , WAITMS

Example
WAIT 3 'wait for three seconds

Print "*"

WAITKEY

Action
Wait until a character is received in the serial buffer.

Syntax
var = WAITKEY()

Ver. 1.11.6.3 BASCOM-AVR Page 384 of 420

var = WAITKEY(#channel)

Remarks
var Variable that receives the ASCII value of the serial buffer.

Can be a numeric variable or a string variable.
#channel The channel used for the software UART.

See also
INKEY

Example
Dim A As Byte

A = Waitkey() 'wait for character

Print A

WAITMS

Action
Suspends program execution for a given time in mS.

Syntax
WAITMS mS

Remarks
Ms The number of milliseconds to wait. (1-65535)

No accurate timing is possible with this command.
In addition, the use of interrupts can slow this routine.
When you write to an EEPROM you must wait for 10 mS after the write

Ver. 1.11.6.3 BASCOM-AVR Page 385 of 420

instruction.

See also
DELAY , WAIT , WAITUS

ASM
WaitMS will call the routine _WAITMS. R24 and R25 are loaded with the
number of milliseconds to wait.
Uses and saves R30 and R31.
Depending on the used XTAL the asm code can look like :

_WaitMS:

_WaitMS1F:

Push R30 ; save Z

Push R31

_WaitMS_1:

Ldi R30,$E8 ;delay for 1 mS

Ldi R31,$03

_WaitMS_2:

Sbiw R30,1 ; -1

Brne _WaitMS_2 ; until 1 mS is ticked
away

Sbiw R24,1

Brne _WaitMS_1 ; for number of mS

Pop R31

Pop R30

Ret

Example
WAITMS 10 'wait for 10 mS

Print "*"

Ver. 1.11.6.3 BASCOM-AVR Page 386 of 420

WAITUS

Action
Suspends program execution for a given time in uS.

Syntax
WAITUS uS

Remarks
US The number of microseconds to wait. (1-255)

This must be a constant. Not a variable!

No accurate timing is possible with this command.
In addition, the use of interrupts can slow this routine.

See also
DELAY , WAIT , WAITMS

Example
WAITUS 10 'wait for 10 uS

Print "*"

WHILE-WEND

Action
Executes a series of statements in a loop, as long as a given condition is true.

Syntax

Ver. 1.11.6.3 BASCOM-AVR Page 387 of 420

WHILE condition
 statements
WEND

Remarks
If the condition is true then any intervening statements are executed until the
WEND statement is encountered.
BASCOM then returns to the WHILE statement and checks the condition.
If it is still true, the process is repeated.
If it is not true, execution resumes with the statement following the WEND
statement.
So in contrast with the DO-LOOP structure, a WHILE-WEND condition is
tested first so that if the condition fails, the statements in the WHILE-WEND
structure are never executed.

See also
DO-LOOP

Example
Dim A As Byte
While A <= 10 'if a is smaller or equal
to 10
 Print A 'print variable a
 Incr A
Wend

WRITEEEPROM

Action
Write a variables content to the DATA EEPROM.

Syntax
WRITEEEPROM var , address

Ver. 1.11.6.3 BASCOM-AVR Page 388 of 420

Remarks
var The name of the variable that must be stored
address The address in the EEPROM where the variable must be stored.

A new option is that you can provide a label name for the address.
See example 2.

This statement is provided for compatibility with BASCOM-8051.
You can also use :
Dim V as Eram Byte 'store in EEPROM
Dim B As Byte 'normal variable
B = 10
V = B 'store variable in EEPROM
When you use the assignment version, the data types must be the same!

According to a datasheet from ATMEL, the first location in the EEPROM with
address 0, can be overwritten during a reset.

For security, register R23 is set to a magic value before the data is written to
the EEPROM.

See also
READEEPROM

ASM
NONE

Example
Dim B As Byte

WriteEEPROM B ,0 'store at first position

ReadEEPROM B, 0 'read byte back

Ver. 1.11.6.3 BASCOM-AVR Page 389 of 420

Example 2
'---
' EEPROM2.BAS
' This example shows how to use labels with READEEPROM
'---
'first dimension a variable
Dim B As Byte
Dim Yes As String * 1

'Usage for readeeprom and writeeprom :
'readeeprom var, address

'A new option is to use a label for the address of the data
'Since this data is in an external file and not in the code the eeprom data
'should be specified first. This in contrast with the normal DATA lines which must
'be placed at the end of your program!!

'first tell the compiler that we are using EEPROM to store the DATA
$eeprom
'specify a label
label1:
Data 1 , 2 , 3 , 4 , 5
Label2:
Data 10 , 20 , 30 , 40 , 50

'Switch back to normal data lines in case they are used
$data

'All the code above does not generate real object code
'It only creates a file with the EEP extension

'Use the new label option
Readeeprom B , Label1
Print B 'prints 1
'Succesive reads will read the next value
'But the first time the label must be specified so the start is known
Readeeprom B
Print B 'prints 2

Readeeprom B , Label2
Print B 'prints 10
Readeeprom B
Print B 'prints 20

'And it works for writing too :
'but since the programming can interfere we add a stop here
Input "Ready?" , Yes
B = 100
Writeeeprom B , Label1
B = 101
Writeeeprom B

'read it back
Readeeprom B , Label1
Print B 'prints 1
'Succesive reads will read the next value
'But the first time the label must be specified so the start is known
Readeeprom B
Print B 'prints 2

End

Changes compared to BASCOM-8051

The design goal was to make BASCOM-AVR compatible with BASCOM-

Ver. 1.11.6.3 BASCOM-AVR Page 390 of 420

8051.

For the AVR compiler I had to remove some statements.
New statements are also added. And some statements were changed.
They need specific attention, but the changes to the syntax will be made
available to BASCOM-8051 too in the future.

Statements that were removed
STATEMENT DESCRIPTION
$LARGE Not needed anymore.
$ROMSTART Code always starts at address 0 for the AVR. Added again in 1.11.6.2
$LCDHEX Use LCD Hex(var) instead.
$NOINIT Not needed anymore. Added in 1.11.6.2
$NOSP Not needed anymore
$NOBREAK Can't be used anymore because there is no object code that can be

used for it.
$OBJ Removed.
BREAK Can't be used anymore because there is no object code that can be

used for it.
PRIORITY AVR does no allow setting priority of interrupts
PRINTHEX You can use Print Hex(var) now
LCDHEX You can use Lcd Hex(var) now

Statements that were added
STATEMENT DESCRIPTION
FUNCTION You can define your own user FUNCTIONS.
LOCAL You can have LOCAL variables in SUB routines or FUNCTIONS.
^ New math statement. Var = 2 ^ 3 will return 2*2*2
SHIFT Because ROTATE was changed, I added the SHIFT statement.

SHIFT works just like ROTATE, but when shifted left, the LS BIT is
cleared and the carry doesn't go to the LS BIT.

LTRIM LTRIM, trims the leftmost spaces of a string.
RTRIM RTRIM, trims the rightmost spaces of a string.
TRIM TRIM, trims both the leftmost and rightmost spaces of a string.

Ver. 1.11.6.3 BASCOM-AVR Page 391 of 420

Statements that behave differently
STATEMENT DESCRIPTION
ROTATE Rotate now behaves like the ASM rotate, this means that the carry will

go to the most significant bit of a variable or the least significant bit of a
variable.

CONST String were added to the CONST statement. I also changed it to be
compatible with QB.

DECLARE BYVAL has been added since real subprograms are now supported.
DIM You can now specify the location in memory of the variable.

Dim v as byte AT 100, will use memory location 100.

Links

Here are some links to software or information that might be useful:

A WINZIP clone to ZIP and UNZIP software
http://ipsoft.cjb.net/

Tips and tricks
This section describes tips and tricks received from users.

Kyle Kronyak : Using all the RAM from an external RAM chip.
I have found a way to use the 607 bytes of external SRAM that are normally
not available when using hardware SRAM support with BASCOM-AVR. It's
actually quite simple. Basically the user just has to disconnect A15 from
/CE on the SRAM module, and tie /CE to ground. This makes the chip
enabled all the time. Addresses 1-32768 will then be available! The
reason is because normally when going above 32768, the A15 pin would go
high, disabling the chip. When A15 is not connected to /CE, the chip is
always enabled, and allows the address number to "roll over". Therefore
address 32162 is actually 0, 32163 is actually 1, 32164 is actually 2, etc. I
have only tested this on a 32k SRAM chip. It definitely won't work on a 64k

Ver. 1.11.6.3 BASCOM-AVR Page 392 of 420

chip, and I believe it already works on any chip below 32k without
modification of the circuit.

Newbie problems

When you are using the AVR without knowledge of the architecture you can
experience some problems.

-I can not set a pin high or low
-I can not read the input on a pin
The AVR has 3 registers for each port. A port normally consist of 8 pins. A
port is named with a letter from A-F.
All parts have PORTB.
When you want to set a single pin high or low you can use the SET and
RESET statements. But before you use them the AVR chip must know in
which direction you are going to use the pins.
Therefore there is a register named DDRx for each port. In our sample it is
named DDRB. When you write a 0 to the bit position of the pin you can use
the pin as an input. When you write a 1 you can use it as output.

After the direction bit is set you must use either the PORTx register to set a
logic level or the PINx register to READ a pin level.
Yes the third register is the PINx register. In our sample PINB.

For example :
DDRB = &B1111_0000 ' upper nibble is output, lower nibble is input
SET PORTB.7 'will set the MS bit to +5V
RESET PORTB.7 'will set MS bit to 0 V

To read a pin :
Print PINB.0 'will read LS bit and send it to the RS-232

Ver. 1.11.6.3 BASCOM-AVR Page 393 of 420

You may also read from PORTx but it will return the value that was last written
to it.

To read or write whole bytes use :
PORTB = 0 'write 0 to register making all pins low
PRINT PINB 'print input on pins

I want to write a special character but they are not printed correct:
Well this is not a newbie problem but I put it here so you could find it.
Some ASCII characters above 127 are interpreted wrong depending on
country settings. To print the right value use : PRINT "Test{123}?"
The {xxx} will be replaced with the correct ascii character.
You must use 3 digits otherwise the compiler will think you want to print {12}
for example. This should be {012}

Supported Programmers
BASCOM supports the following programmers

AVR ICP910 based on the AVR910.ASM application note

STK200 ISP programmer from Atmel/Kanda

The PG302 programmer from Iguana Labs

The simple cable programmer from Sample Electronics.

Eddie McMullen's SPI programmer.

KITSRUS KIT122 Programmer

Ver. 1.11.6.3 BASCOM-AVR Page 394 of 420

PG302 programmer
The PG302 is a serial programmer. It works and looks exactly as the original
PG302 software.

Select the programmer from The Option Programmer menu or right click on

the button to show the Option Programmer menu.

KITSRUS Programmer
The K122 is a KIT from KITSRUS. (www.kitsrus.com)
The programmer supports the most popular 20 and 40 pins AVR chips.
On the Programmer Options tab you must select this programmer and the
COM port it is connected to.
On the Monitor Options tab you must specify the upload speed of 9600,
Monitor delay of 1 and Prefix delay 1.
When you press the Program button the Terminal Emulator screen will pop
up:

Ver. 1.11.6.3 BASCOM-AVR Page 395 of 420

A special toolbar is now visible.
You must press the Program enable button to enable the programmer.
When you enable the programmer the right baud rate will be set.
When you are finished you must press the Enable button again to disable it.
This way you can have a micro connected to your COM port that works with a
different BAUD rate.
There is an option to select between FLASH and EEPROM.
The prompt will show the current mode which is set to FLASH by default.

The buttons on the toolbar allow you to :
ERASE, PROGRAM, VERIFY, DUMP and set the LOCK BITS.
When DUMP is selected you will be asked for a file name.
When the DUMP is ready you must CLOSE the LOGFILE where the data is
stored. This can be done to select the CLOSE LOGFILE option form the
menu.

ISP programmer
BASCOM supports the STK200 and STK200+ and STK300 ISP programmer
from Kanda.

Ver. 1.11.6.3 BASCOM-AVR Page 396 of 420

This is a very reliable parallel printer port programmer.
The STK200 ISP programmer is included in the STK200 starter kit.

All programs were tested with the STK200.

For those who don't have this kit and the programmer the following schematic
shows how to make your own programmer:

The dongle has a chip with no identification but since the schematic is all over
the web, I have included it. Kanda also sells a very cheap separate
programmer dongle. So I suggest you buy this one!

Sample Electronics cable programmer

Ver. 1.11.6.3 BASCOM-AVR Page 397 of 420

The simple cable programmer was submitted by Sample Electronics.
They produce professional programmers too. This simple programmer you
can make yourself within a 10 minutes.

What you need is a DB25 centronics male connector, a flat cable and a
connector that can be connected to the target MCU board.

The connections to make are as following:

DB25 pin Target MCU

pin(AT90S8535)
Target MCU
pin 8515

DT104

2, D0 MOSI, pin 6 MOSI, 6 J5, pin 4
4, D2 RESET, pin 9 RESET, 9 J5, pin 8
5, D3 CLOCK, pin 8 CLOCK, 8 J5, pin 6
11, BUSY MISO, pin 7 MISO, 7 J5, pin 5
18-25,GND GROUND GND,20 J5, pin 1

The MCU pin numbers are shown for an 8535! And 8515

Note that 18-25 means pins 18,19,20,21,22,23,24 and 25
You can use a small resistor of 100-220 ohm in series with the D0, D2 and D3
line in order not to short circuit your LPT port in the event the MCU pins are
high.
But it was tested without these resistors and my PC still works :-)

Tip : when testing programmers etc. on the LPT it is best to buy an I/O card
for your PC that has a LPT port. This way you dont destroy your LPT port that
is on the motherboard in the event you make a mistake!

The following picture shows the connections to make. Both a setup for the
DT104 and stand alone PCB are shown.

I received the following useful information :

Hi Mark,

Ver. 1.11.6.3 BASCOM-AVR Page 398 of 420

I have been having spurious success with the simple cable programmer from
Sample Electronics for the AVR series.

After resorting to hooking up the CRO I have figured it out (I think). When
trying to identify the chip, no response on the MISO pin indicates that the
Programming Enable command has not been correctly received by the target.
The SCK line Mark/Space times were okay but it looked a bit sad with a slow
rise time but a rapid fall time. So I initially tried to improve the rise
time with a pullup. No change ie still could not identify chip. I was about
to add some buffers when I came across an Atmel app note for their serial
programmer

"During this first phase of the programming cycle, keeping the SCK line
free from pulses is critical, as pulses will cause the target AVR to loose
syncronisation with the programmer. When syncronisation is lost, the only
means of regaining syncronisation is to release the RESET line for more
than 100ms."

I have added a 100pF cap from SCK to GND and works first time every time
now. The SCK rise time is still sad but there must have been enough noise
to corrupt the initial command despite using a 600mm shielded cable.

This may be useful to your users.

Regards,

Mark Hayne

Ver. 1.11.6.3 BASCOM-AVR Page 399 of 420

Assembler mnemonics
BASCOM supports the mnemonics as defined by Atmel.
The Assembler accepts mnemonic instructions from the instruction set.

A summary of the instruction set mnemonics and their parameters is given
here. For a detailed description of the Instruction set, refer to the AVR Data
Book.

Mnemonics Operands Description Operation Flags Clock

ARITHMETIC AND
LOGIC INSTRUCTIONS

ADD Rd, Rr Add without Carry Rd = Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry Rd = Rd + Rr + C Z,C,N,V,H 1

SUB Rd, Rr Subtract without Carry Rd = Rd – Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Immediate Rd = Rd – K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry Rd = Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract Immediate with
Carry

Rd = Rd - K - C Z,C,N,V,H 1

AND Rd, Rr Logical AND Rd = Rd · Rr Z,N,V 1

Ver. 1.11.6.3 BASCOM-AVR Page 400 of 420

ANDI Rd, K Logical AND with
Immediate

Rd = Rd · K Z,N,V 1

OR Rd, Rr Logical OR Rd = Rd v Rr Z,N,V 1

ORI Rd, K Logical OR with
Immediate

Rd = Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Rd = Rd Å Rr Z,N,V 1

COM Rd Ones Complement Rd = $FF - Rd Z,C,N,V 1

NEG Rd Twos Complement Rd = $00 - Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd = Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd = Rd · ($FFh - K) Z,N,V 1

INC Rd Increment Rd = Rd + 1 Z,N,V 1

DEC Rd Decrement Rd = Rd - 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd = Rd · Rd Z,N,V 1

CLR Rd Clear Register Rd = Rd Å Rd Z,N,V 1

SER Rd Set Register Rd = $FF None 1

ADIW Rdl, K Add Immediate to Word Rdh:Rdl = Rdh:Rdl + K None 1

SBIW Rdl, K Subtract Immediate
from Word

Rdh:Rdl = Rdh:Rdl - K None 1

MUL Rd,Rr Multiply Unsigned R1, R0 = Rd * Rr C 2 *

BRANCH
INSTRUCTIONS

RJMP k Relative Jump PC = PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC = Z None 2

JMP k Jump PC = k None 3

RCALL k Relative Call Subroutine PC = PC + k + 1 None 3

ICALL Indirect Call to (Z) PC = Z None 3

CALL k Call Subroutine PC = k None 4

RET Subroutine Return PC = STACK None 4

RETI Interrupt Return PC = STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC = PC +
2 or 3

None 1 / 2

CP Rd,Rr Compare Rd - Rr Z,C,N,V,H, 1

CPC Rd,Rr Compare with Carry Rd - Rr - C Z,C,N,V,H 1

CPI Rd,K Compare with
Immediate

Rd - K Z,C,N,V,H 1

SBRC Rr, b Skip if Bit in Register
Cleared

If (Rr(b)=0) PC = PC +
2 or 3

None 1 / 2

SBRS Rr, b Skip if Bit in Register
Set

If (Rr(b)=1) PC = PC +
2 or 3

None 1 / 2

Ver. 1.11.6.3 BASCOM-AVR Page 401 of 420

SBIC P, b Skip if Bit in I/O
Register Cleared

If(I/O(P,b)=0) PC = PC
+ 2 or 3

None 2 / 3

SBIS P, b Skip if Bit in I/O
Register Set

If(I/O(P,b)=1) PC = PC
+ 2 or 3

None 2 / 3

BRBS s, k Branch if Status Flag
Set

if (SREG(s) = 1) then
PC=PC+k + 1

None 1 / 2

BRBC s, k Branch if Status Flag
Cleared

if (SREG(s) = 0) then
PC=PC+k + 1

None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC = PC
+ k + 1

None 1 / 2

BRNE k Branch if Not Equal if (Z = 0) then PC = PC
+ k + 1

None 1 / 2

BRCS k Branch if Carry Set if (C = 1) then PC = PC
+ k + 1

None 1 / 2

BRCC k Branch if Carry Cleared if (C = 0) then PC = PC
+ k + 1

None 1 / 2

BRSH k Branch if Same or
Higher

if (C = 0) then PC = PC
+ k + 1

None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC = PC
+ k + 1

None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC = PC
+ k + 1

None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC = PC
+ k + 1

None 1 / 2

BRGE k Branch if Greater or
Equal, Signed

if (N V= 0) then PC =
PC+ k + 1

None 1 / 2

BRLT k Branch if Less Than,
Signed

if (N V= 1) then PC =
PC + k + 1

None 1 / 2

BRHS k Branch if Half Carry
Flag Set

if (H = 1) then PC = PC
+ k + 1

None 1 / 2

BRHC k Branch if Half Carry
Flag Cleared

if (H = 0) then PC = PC
+ k + 1

None 1 / 2

BRTS k Branch if T Flag Set if (T = 1) then PC = PC
+ k + 1

None 1 / 2

BRTC k Branch if T Flag
Cleared

if (T = 0) then PC = PC
+ k + 1

None 1 / 2

BRVS k Branch if Overflow Flag
is Set

if (V = 1) then PC = PC
+ k + 1

None 1 / 2

BRVC k Branch if Overflow Flag
is Cleared

if (V = 0) then PC = PC
+ k + 1

None 1 / 2

BRIE k Branch if Interrupt
Enabled

if (I = 1) then PC = PC
+ k + 1

None 1 / 2

BRID k Branch if Interrupt
Disabled

if (I = 0) then PC = PC
+ k + 1

None 1 / 2

Ver. 1.11.6.3 BASCOM-AVR Page 402 of 420

DATA TRANSFER
INSTRUCTIONS

MOV Rd, Rr Copy Register Rd = Rr None 1

LDI Rd, K Load Immediate Rd = K None 1

LDS Rd, k Load Direct Rd = (k) None 3

LD Rd, X Load Indirect Rd = (X) None 2

LD Rd, X+ Load Indirect and Post-
Increment

Rd = (X), X = X + 1 None 2

LD Rd, -X Load Indirect and Pre-
Decrement

X = X - 1, Rd =(X) None 2

LD Rd, Y Load Indirect Rd = (Y) None 2

LD Rd, Y+ Load Indirect and Post-
Increment

Rd = (Y), Y = Y + 1 None 2

LD Rd, -Y Load Indirect and Pre-
Decrement

Y = Y - 1, Rd = (Y) None 2

LDD Rd,Y+q Load Indirect with
Displacement

Rd = (Y + q) None 2

LD Rd, Z Load Indirect Rd = (Z) None 2

LD Rd, Z+ Load Indirect and Post-
Increment

Rd = (Z), Z = Z+1 None 2

LD Rd, -Z Load Indirect and Pre-
Decrement

Z = Z - 1, Rd = (Z) None 2

LDD Rd, Z+q Load Indirect with
Displacement

Rd = (Z + q) None 2

STS k, Rr Store Direct (k) = Rr None 3

ST X, Rr Store Indirect (X) = Rr None 2

ST X+, Rr Store Indirect and Post-
Increment

(X) = Rr, X = X + 1 None 2

ST -X, Rr Store Indirect and Pre-
Decrement

X = X - 1, (X) = Rr None 2

ST Y, Rr Store Indirect (Y) = Rr None 2

ST Y+, Rr Store Indirect and Post-
Increment

(Y) = Rr, Y = Y + 1 None 2

ST -Y, Rr Store Indirect and Pre-
Decrement

Y = Y - 1, (Y) = Rr None 2

STD Y+q,Rr Store Indirect with
Displacement

(Y + q) = Rr None 2

ST Z, Rr Store Indirect (Z) = Rr None 2

ST Z+, Rr Store Indirect and Post-
Increment

(Z) = Rr, Z = Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-
Decrement

Z = Z - 1, (Z) = Rr None 2

Ver. 1.11.6.3 BASCOM-AVR Page 403 of 420

STD Z+q,Rr Store Indirect with
Displacement

(Z + q) = Rr None 2

LPM Load Program Memory R0 =(Z) None 3

IN Rd, P In Port Rd = P None 1

OUT P, Rr Out Port P = Rr None 1

PUSH Rr Push Register on Stack STACK = Rr None 2

POP Rd Pop Register from
Stack

Rd = STACK None 2

BIT AND BIT-TEST
INSTRUCTIONS

LSL Rd Logical Shift Left Rd(n+1) =Rd(n),Rd(0)=
0,C=Rd(7)

Z,C,N,V,H 1

LSR Rd Logical Shift Right Rd(n) = Rd(n+1), Rd(7)
=0, C=Rd(0)

Z,C,N,V 1

ROL Rd Rotate Left Through
Carry

Rd(0) =C, Rd(n+1)
=Rd(n),C=Rd(7)

Z,C,N,V,H 1

ROR Rd Rotate Right Through
Carry

Rd(7) =C,Rd(n)
=Rd(n+1),C¬Rd(0)

Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) = Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0) « Rd(7..4) None 1

BSET s Flag Set SREG(s) = 1 SREG(s) 1

BCLR s Flag Clear SREG(s) = 0 SREG(s) 1

SBI P, b Set Bit in I/O Register I/O(P, b) = 1 None 2

CBI P, b Clear Bit in I/O Register I/O(P, b) = 0 None 2

BST Rr, b Bit Store from Register
to T

T = Rr(b) T 1

BLD Rd, b Bit load from T to
Register

Rd(b) = T None 1

SEC Set Carry C = 1 C 1

CLC Clear Carry C = 0 C 1

SEN Set Negative Flag N = 1 N 1

CLN Clear Negative Flag N = 0 N 1

SEZ Set Zero Flag Z = 1 Z 1

CLZ Clear Zero Flag Z = 0 Z 1

SEI Global Interrupt Enable I = 1 I 1

CLI Global Interrupt Disable I = 0 I 1

SES Set Signed Test Flag S = 1 S 1

CLS Clear Signed Test Flag S = 0 S 1

SEV Set Twos Complement
Overflow

V = 1 V 1

Ver. 1.11.6.3 BASCOM-AVR Page 404 of 420

CLV Clear Twos
Complement Overflow

V = 0 V 1

SET Set T in SREG T = 1 T 1

CLT Clear T in SREG T = 0 T 1

SHE Set Half Carry Flag in
SREG

H = 1 H 1

CLH Clear Half Carry Flag in
SREG

H = 0 H 1

NOP No Operation None 1

SLEEP Sleep None 1

WDR Watchdog Reset None 1

*) Not available in base-line microcontrollers

The Assembler is not case sensitive.

The operands have the following forms:

Rd: R0-R31 or R16-R31 (depending on instruction)

 Rr: R0-R31

 b: Constant (0-7)

 s: Constant (0-7)

 P: Constant (0-31/63)

 K: Constant (0-255)

 k: Constant, value range depending on instruction.

 q: Constant (0-63)

 Rdl: R24, R26, R28, R30. For ADIW and SBIW instructions

Mixing ASM and BASIC
BASCOM allows you to mix BASIC with assembly.
This can be very useful in some situations when you need full control of the
generated code.

Almost all assembly mnemonics are recognized by the compiler. The

Ver. 1.11.6.3 BASCOM-AVR Page 405 of 420

exceptions are : SUB, SWAP,CALL and OUT. These are BASIC reserved
words and have priority over the ASM mnemonics. To use these mnemonics
precede them with the ! - sign.
For example :

Dim a As Byte At &H60 'A is stored at location &H60
Ldi R27 , $00 'Load R27 with MSB of address
Ldi R26 , $60 'Load R26 with LSB of address
Ld R1, X 'load memory location $60 into R1
!SWAP R1 'swap nibbles

As you can see the SWAP mnemonic is preceded by a ! sign.

Another option is to use the assembler block directives:
$ASM
 Ldi R27 , $00 'Load R27 with MSB of address
 Ldi R26 , $60 'Load R26 with LSB of address
 Ld R1, X 'load memory location $60 into R1
 SWAP R1 'swap nibbles
$END ASM

A special assembler helper function is provided to load the address into the
register X or Z. Y can may not be used because it is used as the soft stack
pointer.

Dim A As Byte 'reserve space
LOADADR a, X 'load address of variable named A into register pair
X

This has the same effect as :
Ldi R26 , $60 'for example !
Ldi R27, $00 'for example !

Ver. 1.11.6.3 BASCOM-AVR Page 406 of 420

Some registers are used by BASCOM
R4 and R5 are used to point to the stack frame or the temp data storage
R6 is used to store some bit variables:
 R6 bit 0 = flag for integer/word conversion
 R6 bit 1 = temp bit space used for swapping bits
 R6 bit 2 = error bit (ERR variable)
 R6 bit 3 = show/noshow flag when using INPUT statement
R8 and R9 are used as a data pointer for the READ statement.

All other registers are used depending on the used statements.

To Load the address of a variable you must enclose them in brackets.
Dim B As Bit

Lds R16, {B} 'will replace {B} with the address of variable B

To refer to the bitnumber you must precede the variable name by BIT.
Sbrs R16 , BIT.B 'notice the point!
Since this was the first dimensioned bit the bit number is 7. Bits are stored in
bytes and the first dimensioned bit goes in the LS bit.

To load an address of a label you must use :
LDI ZL, Low(lbl * 1)
LDI ZH , High(lbl * 1)
Where ZL = R30 and may be R24, R26, R28 or R30
And ZH = R31 and may be R25, R27, R29 or R31.
These are so called register pairs that form a pointer.

When you want to use the LPM instruction to retrieve data you must multiply
the address with 2 since the AVR object code consist of words.
LDI ZL, Low(lbl * 2)
LDI ZH , High(lbl * 2)
LPM ; get data into R0
Lbl:

Atmel mnemonics must be used to program in assembly.

Ver. 1.11.6.3 BASCOM-AVR Page 407 of 420

You can download the pdf from www.atmel.com that shows how the different
mnemonics are used.
Some points of attention :
* All instructions that use a constant as a parameter only work on the upper
16 registers (r16-r31)
So LDI R15,12 WILL NOT WORK

* The instruction SBR register, K
will work with K from 0-255. So you can set multiple bits!

The instruction SBI port, K will work with K from 0-7 and will set only ONE bit
in a IO-port register.

The same applies to the CBR and CBI instructions.

How to make your own libraries and call them from BASIC?
The files for this sample can be found as libdemo.bas in the SAMPLES dir
and as mylib.lib in the LIB dir.

First determine the used parameters and their type.
Also consider if they are passed by reference or by value

For example the sub test has two parameters:
 x which is passed by value (copy of the variable)
 y which is passed by reference(address of the variable)

In both cases the address of the variable is put on the soft stack which is
 indexed by the Y pointer.

The first parameter (or a copy) is put on the soft stack first
To refer to the address you must use:
 ldd r26 , y + 0
 ldd r27 , y + 1
This loads the address into pointer X

The second parameter will also be put on the soft stack so :

Ver. 1.11.6.3 BASCOM-AVR Page 408 of 420

The reference for the x variable will be changed :

To refer to the address of x you must use:
 ldd r26 , y + 2
 ldd r27 , y + 3

To refer to the last parameter y you must use
 ldd r26 , y + 0
 ldd r27 , y + 1

Write the sub routine as you are used too but include the name within
brackets []

[test]
test:
 ldd r26,y+2 ; load address of x
 ldd r27,y+3
 ld r24,x ; get value into r24
 inc r24 ; value + 1
 st x,r24 ; put back
 ldd r26,y+0 ; address of y
 ldd r27,y+1
 st x,r24 ; store
 ret ; ready
[end]

To write a function goes the same way.
A function returns a result so a function has one additional parameter.
It is generated automatic and it has the name of the function.
This way you can assign the result to the function name
For example:

Declare Function Test(byval x as byte , y as byte) as byte

Ver. 1.11.6.3 BASCOM-AVR Page 409 of 420

A virtual variable will be created with the name of the function in this case
test.
It will be pushed on the softstack with the Y-pointer.
To reference to the result or name of the function (test) the address will be:
 y + 0 and y + 1
The first variable x will bring that to y + 2 and y + 3
And the third variable will cause that 3 parameters are saved on the soft stack
To reference to test you must use :
 ldd r26 , y + 4
 ldd r27 , y + 5

To reference to x
 ldd r26 , y + 2
 ldd r27 , y + 3
And to reference y
 ldd r26 , y + 0
 ldd r27 , y + 1

When you use exit sub or exit function you also need to provide an additional
label. It starts with sub_ and must be completed with the function / sub
routine name. In our example:
sub_test:

When you use local variables thing become more complicated.
Each local variable address will be put on the soft stack too
When you use 1 local variable its address will become
 ldd r26, y+0
 ldd r27 , y + 1
All other parameters must be increased with 2 so the reference to y variable
changes from
 ldd r26 , y + 0 to ldd r26 , y + 2
 ldd r27 , y + 1 to ldd r27 , y + 3
And of course also for the other variables.

When you have more local variables just add 2 for each.

Ver. 1.11.6.3 BASCOM-AVR Page 410 of 420

Finally you save the file as a .lib file
Use the library manager to compile it into the lbx format.
The declare sub / function must be in the program where you use the sub /
function.

The following is a copy of the libdemo.bas file :

'define the used library
$lib "mylib.lib"

'also define the used routines
$external Test

'this is needed so the parameters will be placed correct on the stack
Declare Sub Test(byval X As Byte , Y As Byte)

'reserve some space
Dim Z As Byte

'call our own sub routine
Call Test(1 , Z)

'z will be 2 in the used example
End

When you use ports in your library you must use .equ to specify the address:
.equ EEDR=$1d
In R24, EEDR

This way the library manager know the address of the port during compile
time.

This chapter is not intended to learn you ASM programming. But when you
find a topic is missing to interface BASCOM with ASM send me an email.

Ver. 1.11.6.3 BASCOM-AVR Page 411 of 420

International Resellers

Argentina
Dinastia Soft
Oscar H. Gonzalez
Roca 2239 (1714)
Ituzaingo
Buenos Aires
Argentina

Phone: +54-1-4621-0237
Fax : +54-1-4621-0237
Email : dinastiasof@infovia.com.ar
WWW : http://www.dinastiasoft.com.ar

Australia & USA
DonTronics
Don McKenzie P.O.
Box 595
Tullamarine 3043
Australia

Email don@dontronics.com
WWW http://www.dontronics.com

Austria
RIBU ELEKTRONIK GMBH
Muehlgasse 18
A-8160 Weiz

Phone : 03172-64800
Fax : 03172-64806
Email : office@ribu.at

Ver. 1.11.6.3 BASCOM-AVR Page 412 of 420

WWW :http://www.ribu.at

Brazil(8051 specialized)
Miguel Wisintainer
RUA URUSSANGA, 283
CEP 89020-120
BLUMENAU S.C
BRASIL

Email: mw@furb.br
WWW:http://www.furb.br/~mw/bascom

Brazil(AVR specialized)
Octavio Nogueira
Tato Equipamentos Eletronicos Ltda.
Rua Ipurinas,164
Sao Paulo - SP 04561-050
Brazil

Phone: +55 11 5506-5335
Fax: +55 11 5506-2328

Email: octaviopnogueira@uol.com.br
WWW:http://www.tato.ind.br

China, Japan, Singapore, Malaysia, Taiwan,
Thailand and Hongkong
DIY Electronics (HK) Ltd.
Peter Crowcroft
P.O. Box 88458
Sham Shui Po, Hong Kong
CHINA
Phone: +852 2720 0255
Fax : +852 2725 0610
Email : peter@kitsrus.com
WWW: http://kitsrus.com

Croatia, Bosnia, Macedonia and Slovenia
AX Elektronika d.o.o.

Ver. 1.11.6.3 BASCOM-AVR Page 413 of 420

Managing Director: Jure Mikeln
p.p.5127
1001 Ljubljana
SLOVENIA

Phone: +386-1-54-914-00
Fax : +386-1-52-856-88
Email : jure.mikeln@svet-el.si
WWW: http://www.svet-el.si/english

Czech & Slovak
LAMIA s.r.o.
Antonin Straka
Porici 20a
Blansko
678 01
CZECH REPUBLIC

Phone: +00420-506-418726
Fax : +00420-506-53988

France
SARL OPTIMINFO
M. Belouet
France

Phone: +(33) 820 900 021
Fax : +(33) 820 900 126
Email : Optiminfo@libertysurf.fr
WWW: www.optiminfo.com

Germany & Switserland
Consulting & Distribution
Dr. - Ing. Claus Kuehnel
Muehlenstrasse 9
D-01257 Dresden
GERMANY

Phone:+41.1.785.02.38
Fax :+41.1.785.02.75
Email : info@ckuehnel.ch
WWW: http://www.ckuehnel.ch

Ver. 1.11.6.3 BASCOM-AVR Page 414 of 420

Germany
Elektronikladen Mikrocomputer GmbH
Martin Danne
Wilhelm.-Mellies-Str. 88
D- 32758 Detmold
GERMANY

Phone: +49 5232-8171
Fax : +49 5232-86197
E-Mail: sales@elektronikladen.de
WWW: www.elektronikladen.de
Vertriebsbüros in Hamburg, Berlin, Leipzig, Frankfurt, München

Hungary
CODIX Ltd, Hungary
Imre Gaspar
Atilla u 1-3,
H-1013 Budapest
HUNGARY

Phone: +361 156 6330
Fax : +361 156 4376

Email codix@mail.matav.hu
WWW http://www.hpconline.com/codix

Italy
Grifo(R)
Salvatore Damino
Via dell'Artigiano 8/6
40016 S.Giorgio di Piano BO
ITALY

Phone: +39 (51) 892.052
Fax : +39 (51) 893.661

Email : tech@grifo.it
WWW: http://www.grifo.com (Englisch)
WWW: http://www.grifo.it (Italian)

Japan
International Parts & Information Co.,Ltd.
Shuji Nonaka

Ver. 1.11.6.3 BASCOM-AVR Page 415 of 420

Sengen 2-1-6 Tukuba City
Ibaraki Pref.
JAPAN 305-0047

Phone: +81-298-50-3113
Fax : +81-298-50-3114
Email sales@ipic.co.jp
WWW http://www.ipic.co.jp

Japan
Japan Computer Life, Inc.
Yasumi Tanaka
3-106 Kurosawa-dai
Midori-ku
Nagoya
JAPAN

Phone: +81-52-877-7192
Fax : +81-52-877-7192
Email jcl@tctvnet.ne.jp
WWW http://www.tctvnet.ne.jp/~jcl

Korea
SAMPLE Electronics Co.
Junghoon Kim
306 Jeshin 43-22 Shinkey Youngsan Seoul Korea
Postal code 140-090

Phone: 82-2-707-3882
Fax : 82-2-707-3884
Email : sample@korea.com
WWW: http://www.sample.co.kr

Malaysia and Singapore
I-Pal Communications
Ling SM
14 Dickson Road
Singapore 209500
Singapore

Phone: 65-362 0950
Fax : 65-362-2437
Email : admin@i-pal.com
WWW: http://www.i-pal.com/embedded.html

Ver. 1.11.6.3 BASCOM-AVR Page 416 of 420

Pakistan
ORRIS MICRO SYSTEM
Malik Muhammad Nawaz Awan
15/Y, TARIQ BIN ZIAD COLONY, SAHIWAL.
PAKISTAN

Phone: 0441-66982
Email : oms@brain.net.pk

Poland
RK-SYSTEM
Robert Kacprzycki
CHELMONSKIEGO 30
05-825 GRODZISK MAZ.
POLAND.

Phone: +4822 724 30 39
Fax: +4822 724 30 37
Email: robertk@univcomp.waw.pl
WWW: http://www.rk-system.com.pl

Portugal & Spain
Multidigital, Lda
Joaquim Boavida
P.O. Box 137
4435 Rio Tinto
PORTUGAL

Phone: +351 - 2 - 6102217
Fax : +351 - 2 - 4862173

Email: jboavida@multidigital.comm
WWW: http://www.multidigital.com

Scandinavia (Sweden, Norway, Denmark)
High Tech Horizon
ChristerJohansson
Asbogatan 29 C
S-262 51 Angelholm
SWEDEN

Ver. 1.11.6.3 BASCOM-AVR Page 417 of 420

Phone: +46 431-41 00 88
Fax : +46 431-41 00 88
Email: info@hth.com
WWW: http://www.hth.coml

Sweden
LAWICEL
Lars Wictorsson
Klubbgatan 3
SE-282 32 TYRINGE
SWEDEN

Phone: +46 (0)451 59877
Fax : +46 (0)451 59878
WWW: http://www.lawicel.com
Email : info@lawicel.com

Spain
Ibercomp
Miquel Zuniga
C/. del Parc, numero 8 (bajos)
E-07014
Palma de Mallorca
Spain

Phone: +34 (9) 71 45 66 42
Fax : +34 (9) 71 45 67 58
Email: ibercomp@atlas-iap.es
WWW: http://www.ibercomp.es

Turkey
Era Bilgi Sistemleri Yayincilik Elektronik San.Tic.Ltd.
Gokhan Dincer (Mr)
Guneslibahce Sokak, No:70, Kadikoy, Istanbul 81300, Turkey
Phone: + 90 216 3363619 - 4146873
Fax: + 90 216 3474863

Email: infogate@infogate.org
WWW: http://www.infogate.org

Ver. 1.11.6.3 BASCOM-AVR Page 418 of 420

UK
QUASAR ELECTRONICS
Simon Neil
Unit 14 Sunningdale
BISHOP'S STORTFORD
Herts
CM23 2PA
UNITED KINGDOM

TEL: +44 (0)1279 306504
FAX: +44 (0)870 7064222

Email: simon@quasarelectronics.com
WWW http://www.quasarelectronics.com/home.htm

USA
DonTronics
Don McKenzie P.O.
Box 595
Tullamarine 3043
Australia

Email don@dontronics.com
WWW http://www.dontronics.com

USA
Techniks, Inc.
Frank Capelle
PO Box 463
Ringoes, NJ 08551
USA

Phone: 908-788-8249
Fax: 908-788-8837

Email: Techniks@techniks.com
WWW: http://www.techniks.com

Ver. 1.11.6.3 BASCOM-AVR Page 419 of 420

USA
M. Akers Enterprises
Michael W. Akers, US BASCOM support
3800 Vineyard Avenue #E
Pleasanton, CA 94566-6734
USA

Phone: +1-925-640-3600
Fax: +1-925-640-3600

Email: info@mwakers.com
WWW: http://www.mwakers.com

USA
Rhombus
David H. Lawrence
1909 Old Mountain Creek Road
Greenville, SC 29609
USA

Phone: +1-864-233-8330
Fax: +1-864-233-8331

Email: webmaster@rhombusinc.com
WWW: http://www.rhombusinc.com

USA
BiPOM Electronics, Inc.
Oguz Murtezaoglu
11246 South Post Oak #205
Houston, Texas 77035
USA

Phone: 713-661-4214
Fax: 713-661-4201

Ver. 1.11.6.3 BASCOM-AVR Page 420 of 420

Email: oguz@bipom.com
WWW: http://www.bipom.com

